首页> 外文会议>SPE Annual Technical Conference and Exhibition >Molecular Dynamics Study of Carbon Dioxide Storage in Carbon-Based Organic Nanopores
【24h】

Molecular Dynamics Study of Carbon Dioxide Storage in Carbon-Based Organic Nanopores

机译:碳基有机纳米孔中二氧化碳储存的分子动力学研究

获取原文

摘要

With large scale production of gas from shale resources, large volumes of pore space have been vacated. Therefore, there is a large capacity for storage of carbon dioxide in these resources. Furthermore, due to the higher affinity of the organic matter to carbon dioxide compared to methane, injection of carbon dioxide can replace the adsorbed methane and therefore, enhances the recovery of natural gas. The objective for this work is to investigate the sorption (adsorption of carbon dioxide and desorption of methane) in carbon-based organic channels using Molecular Dynamics (MD) simulations. In this study, adsorption isotherms of methane and carbon dioxide are compared by performing grand canonical Monte Carlo (GCMC) simulations in identical setups of carbon channels. Excess and absolute adsorption isotherms of these gases are plotted and compared. Furthermore, the surface selectivity of carbon dioxide over methane is computed to determine the competitive adsorption of these two gases. To simulate the displacement process, MD simulations of displacement of methane molecules with carbon dioxide molecules in presence and absence of pressure gradients are performed. The results are compared for different values of gas pressures and pressure gradients. According to the results, adsorption capability of carbon dioxide is found to be higher than that of methane under the same pressure and temperature. The selectivity values of carbon dioxide over methane is found to be higher than the ones for pressure range of 100 to 200 atm, which shows that carbon dioxide molecules have higher affinity to the surface compared with methane. It is also found that carbon dioxide molecules replace adsorbed methane molecules due to their higher affinity to the surface. Concentration of methane sharply decreases as carbon dioxide molecules are introduced in the channel. The results show that the amount of carbon dioxide storage and methane production rate increases as injection pressure increases. The results in this study can impact on the research and development of new tools for both candidate selection (selection of the sites for carbon dioxide storage) and development of predictive models for estimating of the amount of carbon dioxide intake.
机译:随着物资资源的大规模生产的气体,已经腾出了大量的孔隙空间。因此,在这些资源中存在大量的储存二氧化碳。此外,由于与甲烷相比,有机质对二氧化碳的较高亲和力,二氧化碳的注射可以代替吸附的甲烷,因此增强了天然气的回收率。这项工作的目的是研究使用分子动力学(MD)模拟的碳基有机通道中碳基有机通道的吸附(甲烷的吸附)。在该研究中,通过在相同的碳通道中进行大规模的蒙特卡罗(GCMC)模拟来比较甲烷和二氧化碳的吸附等温线。绘制并比较这些气体的过量和绝对吸附等温线。此外,计算二氧化碳在甲烷上的表面选择性以确定这两个气体的竞争吸附。为了模拟位移过程,进行在存在和不存在压力梯度存在下具有二氧化碳分子的MD模拟甲烷分子的位移。将结果与不同的气体压力和压力梯度的值进行比较。根据结果​​,发现二氧化碳的吸附能力在相同的压力和温度下高于甲烷的吸附能力。发现甲烷上二氧化碳的选择性值高于100至200atm的压力范围的选择性值,表明二氧化碳分子与甲烷相比具有更高的表面的亲和力。还发现,由于其对表面的亲和力较高,二氧化碳分子代替吸附的甲烷分子。随着二氧化碳分子在通道中引入二氧化碳分子,甲烷的浓度急剧下降。结果表明,随着注射压力的增加,二氧化碳储存量和甲烷生产率的量增加。该研究的结果可能会对候选选择(二氧化碳储存场所的选择)的新工具的研究和开发产生影响,以及用于估算二氧化碳摄入量的预测模型的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号