首页> 外文学位 >Redox-magnetohydrodynamic (MHD) microfluidics: Fundamentals, optimization, and applications to analytical chemistry.
【24h】

Redox-magnetohydrodynamic (MHD) microfluidics: Fundamentals, optimization, and applications to analytical chemistry.

机译:氧化还原-磁流体动力学(MHD)微流体:基础知识,优化及其在分析化学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic systems are of great interest in analytical chemistry for the development of lab-on-a-chip devices. This dissertation describes fundamental investigations of magnetohydrodynamics with added redox species (redox-MHD) as a new microfluidic approach for use in analytical applications. Redox-MHD is attractive because it offers a unique combination of desirable features that are otherwise only available separately with individual micropumps. Redox-MHD is compatible with aqueous and nonaqueous solutions, does not require moving parts, easily reverses flow direction, and requires only low voltages. An ion flux is generated from the oxidation or reduction of an electroactive species at specific locations by activated electrodes patterned on the chip. In the presence of a magnetic field perpendicular to the ion flux, a magnetic force is generated to induce solution convection. This convection is visualized using microbeads to track fluid flow over microband electrode arrays to investigate redox-MHD in a confined solution. The effects of concentration of redox species, widths of electrodes, gaps between electrodes, and applied potentials and currents on flow velocities are discussed. A significant result is the fairly flat flow profile attained in the gap between electrodes that are oppositely biased. A novel method for maximizing flow velocities in order to lower the necessary concentration of redox species to perform pumping is presented. Velocities were increased by as much as 70% from control experiments using the technique. Redox MHD-induced convection was also shown to be compatible with and used to transport components of an immunoassay (without channel walls) while simultaneously detecting an enzymatically-generated electroactive species. Key findings include much lower concentrations of redox-pumping species than were originally anticipated, enzymatic activity was sustainable in the presence of those pumping species, detection signal easily separated from pumping signal, and direction of fluid motion controlled by active electrode placement instead of reconfiguring channel walls or controlling valves. These results suggest that a general design of a microfluidic device could be utilized for a broad range of flow patterns and applications.
机译:微流体系统在分析化学上对芯片实验室设备的开发非常感兴趣。本文描述了磁流体动力学的基本研究,该方法研究了添加氧化还原物质(redox-MHD)作为一种新的微流体方法,用于分析应用。氧化还原-MHD具有吸引力,因为它提供了所需功能的独特组合,否则这些功能只能与单个微型泵分开使用。氧化还原-MHD与水溶液和非水溶液兼容,不需要移动部件,很容易反转流动方向,并且只需要低电压。离子流是由芯片上构图的活化电极在特定位置氧化或还原电活性物质产生的。在垂直于离子通量的磁场存在下,会产生磁力以引起溶液对流。该对流使用微珠可视化,以跟踪微带电极阵列上的流体流动,以研究密闭溶液中的氧化还原-MHD。讨论了氧化还原物质的浓度,电极的宽度,电极之间的间隙以及施加的电势和电流对流速的影响。一个显着的结果是在相反偏置的电极之间的间隙中获得了相当平坦的流动曲线。提出了一种最大化流速以降低氧化还原物质执行泵送所需浓度的新颖方法。使用该技术,与对照实验相比,速度提高了多达70%。氧化还原MHD诱导的对流还显示与免疫测定的成分兼容(无通道壁),并同时用于检测酶促产生的电活性物质。关键发现包括:氧化还原泵浦物质的浓度比最初预期的要低得多;在存在这些泵浦物质的情况下,酶活性是可持续的;检测信号容易与泵浦信号分离;流体运动的方向由有源电极放置而不是重新配置通道来控制墙或控制阀。这些结果表明,微流体装置的一般设计可用于广泛的流动模式和应用。

著录项

  • 作者

    Weston, Melissa Christine.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号