首页> 外文学位 >Optoelectronic receivers in silicon on sapphire CMOS: Architecture and design for efficient parallel interconnects.
【24h】

Optoelectronic receivers in silicon on sapphire CMOS: Architecture and design for efficient parallel interconnects.

机译:蓝宝石CMOS硅上的光电接收器:高效并行互连的体系结构和设计。

获取原文
获取原文并翻译 | 示例

摘要

Internal data rates of processors fabricated in deep sub-micron CMOS technology have exceeded gigahertz rates. While processing proceeds at gigahertz internally, off chip wires have held inter-chip clock rates in the hundreds of megahertz. The rate of inter-chip communication is now the bottleneck in high performance systems.; Optical inter and intra-chip communication has the potential to solve interconnect problems. Inter-chip opto-electronic communication is complicated by the difficulty of routing bidirectional optical signals in parallel around substrates. Furthermore, the design of CMOS compatible high performance electronics for optical channel interfaces is limited by parasitic effects in today's bulk CMOS processes.; In this dissertation, I focus on approaches to solving the inter-chip communication problem by through opto-electronic receiver design. This approach is multifaceted. First, I will discuss receiver design using the newly developed ultra-thin silicon-on-sapphire CMOS technology. I present designs and results of circuits that exploit both the optical and insulating properties of the sapphire substrate to implement short and middle distance opto-electronic links. Interconnects constructed in this way avoid conventional CMOS routing and speed limitations. Second, I will consider various receiver architectures for power efficient short and middle distance bit transfer in the context of an optical link. Finally, I will discuss scanned and spike-based data transfer of continuous valued data arrays. By examining the problem of optoelectronic receiver design from three angles, I hope to promote a deeper understanding of the overlapping issues concerned in design of highly connective systems for the future of CMOS electronics.
机译:使用深亚微米CMOS技术制造的处理器的内部数据速率已超过千兆赫兹速率。尽管内部处理速度为千兆赫兹,但片外线将芯片间时钟速率保持在数百兆赫兹。芯片间通信的速率现在已成为高性能系统中的瓶颈。光学内部和芯片内通信具有解决互连问题的潜力。芯片间光电通信由于难以在基板周围并行路由双向光信号而变得复杂。此外,在当今的批量CMOS工艺中,寄生效应限制了用于光通道接口的CMOS兼容高性能电子设备的设计。本文主要研究通过光电接收器设计解决芯片间通信问题的方法。这种方法是多方面的。首先,我将讨论使用新开发的超薄蓝宝石硅CMOS技术的接收器设计。我将介绍利用蓝宝石衬底的光学和绝缘特性来实现中短距离光电链路的电路设计和结果。以这种方式构造的互连避免了常规的CMOS布线和速度限制。其次,我将考虑在光链路的情况下用于功率有效的中短距离比特传输的各种接收器体系结构。最后,我将讨论连续值数据数组的基于扫描和基于峰值的数据传输。通过从三个角度研究光电接收器设计问题,我希望增进对CMOS电子未来的高度连接系统设计中所涉及的重叠问题的更深入了解。

著录项

  • 作者

    Apsel, Alyssa Beth.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号