首页> 外文学位 >Near-infrared Stokes and anti-Stokes Raman spectrometry of explosives.
【24h】

Near-infrared Stokes and anti-Stokes Raman spectrometry of explosives.

机译:爆炸物的近红外斯托克斯和反斯托克斯拉曼光谱。

获取原文
获取原文并翻译 | 示例

摘要

The analysis and identification of explosive threats has become of great concern to law enforcement personnel over the last 10 years. During the same period of time, Raman spectroscopic instrumentation has experienced a significant increase in performance and a decrease in size and complexity. In this dissertation the use of several instrumental approaches to the measurement of fluorescence-free Raman spectra is described with an aim of developing a field-portable explosives analyzer.; Anti-Stokes Raman spectra of 27 explosive materials were obtained with 1064-nm excitation using fiber-optic sampling and a dispersive spectrograph equipped with a charge-coupled device (CCD) array detector, over a range of −250 to −1650cm−1. Fiber-optic probe sampling permitted spectral acquisition within twelve meters and 240s. The utility of an anti-Stokes correction routine was demonstrated which allowed anti-Stokes spectra measured with 1064-nm excitation to be successfully searched and identified against libraries of Stokes spectra obtained using an FT Raman system equipped with a 1064-nm Nd:YAG laser.; A NIR laser (1064-nm) dispersive Raman spectrometer with germanium array detection was used to measure the Stokes-shifted Raman spectra of explosives. By using a germanium array detector, spectral features from 250 to 1800cm −1 could be observed for the majority of compounds studied. Spectra were obtained within 240s. The utility of this instrument is compared to other previous identified instrumental approaches, with particular regard to fieldability of a Raman-based explosive analyzer.; Stokes Raman spectra of 23 explosives with 785 and 830-nm excitation, and 1064-nm anti-Stokes Raman spectra, were compared using fiber-optic sampling and a no-moving parts spectrograph. 830-nm excitation offers better fluorescence rejection than 785-nm, which is key for the analysis of fluorescent explosives. With a high-powered 1064-nm laser, anti-Stokes measurements did not yield spectra of as high quality as 785-nm and 830-nm Stokes Raman measurements. FT-Raman remains the preferred method for fluorescence-free analysis of these explosive materials in the laboratory, but 830-nm excitation is preferred for a field-portable instrument.; This work demonstrates that the use of an 830-nm based fiber coupled Raman spectrometer coupled with post-processing baseline correction, and library searching is the preferred approach for the measurement of Raman spectra in the field.
机译:在过去的十年中,爆炸性威胁的分析和识别已成为执法人员的极大关注。在同一时间段内,拉曼光谱仪器的性能显着提高,尺寸和复杂性降低。在本文中,描述了几种仪器方法在无荧光拉曼光谱测量中的应用,目的是开发一种现场便携式炸药分析仪。使用光纤采样和配备有电荷耦合器件(CCD)阵列检测器的色散光谱仪,在1064-nm激发下获得了27种爆炸材料的反斯托克斯拉曼光谱,光谱范围为-250至-1650cm -1 。光纤探头采样允许在十二米和240秒内采集光谱。演示了反斯托克斯校正例程的实用性,该例程可成功搜索并针对使用配备有1064 nm Nd:YAG激光的FT拉曼系统获得的斯托克斯光谱库,搜索和识别使用1064 nm激发测量的反斯托克斯光谱。 。;使用具有锗阵列检测功能的NIR激光(1064-nm)色散拉曼光谱仪测量爆炸物的斯托克斯位移拉曼光谱。通过使用锗阵列检测器,可以对大多数研究的化合物观察到250至1800cm -1 的光谱特征。在240秒内获得光谱。将该仪器的效用与其他先前确定的仪器方法进行了比较,特别是在基于拉曼的爆炸物分析仪的可现场性方面。使用光纤采样和无移动部件光谱仪对23种具有785和830 nm激发光的炸药的斯托克斯拉曼光谱以及1064 nm反斯托克斯拉曼光谱进行了比较。 830 nm激发提供比785 nm更好的荧光抑制,这是分析荧光炸药的关键。使用高功率1064 nm激光器,抗斯托克斯(Stokes)测量无法获得像785 nm和830 nm Stokes拉曼测量一样高质量的光谱。 FT-拉曼光谱仪仍然是在实验室中对这些爆炸物进行无荧光分析的首选方法,但是对于现场便携式仪器而言,优选830 nm激发。这项工作表明,基于830纳米的光纤耦合拉曼光谱仪与后期处理基线校正相结合,并且库搜索是现场测量拉曼光谱的首选方法。

著录项

  • 作者

    Lewis, Mary Louise Haynos.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号