首页> 外文学位 >Molecular mobility, physical stability, and transformation kinetics of amorphous and hydrated pharmaceutical solids.
【24h】

Molecular mobility, physical stability, and transformation kinetics of amorphous and hydrated pharmaceutical solids.

机译:无定形和水合药物固体的分子迁移率,物理稳定性和转化动力学。

获取原文
获取原文并翻译 | 示例

摘要

Amorphous forms have been shown to improve the bioavailability of poorly water-soluble drugs. However, its intrinsic tendency to undergo crystallization imposes great challenges in the formulation of amorphous drugs. This study aims to provide a fundamental understanding of the physical instability, that is the crystallization, of amorphous pharmaceuticals in terms of configurational thermodynamic quantities and molecular mobility, as well as solid-state kinetics.; Using five model compounds that form amorphous phases with distinct crystallization tendencies, we have shown that configurational entropy and molecular mobility are equally important in determining the crystallization tendencies of amorphous phases in the rubbery state. For spontaneous crystallization to occur, amorphous phases with high configurational entropy require high molecular mobility. As a result, greater effort is required to stability amorphous forms of small, rigid molecules than those of large, flexible molecules.; Molecular mobility in glasses is greatly influenced by annealing and decreases with annealing time. However, for both fresh and annealed glasses, the temperature dependence of molecular mobility conforms approximately to the Arrhenius equation. Ritonavir and nifedipine glasses have different annealing behavior, which explains the differences in their stability.; Amorphous griseofulvin readily crystallizes above and below Tg. Our results suggest that molecular diffusion plays an important, but not exclusive, role in determining the rate of crystallization. However, the correlation between the rate of crystallization and molecular mobility is reduced in the glassy state. This observation is explained by the higher molecular mobility in real glasses than in the ideal glasses.; Crystallization kinetics of amorphous nifedipine was treated by model-fitting and model-free approaches. Model-free analysis provides a more realistic picture of the actual process of crystallization and gives improved predictions. The model-free treatment has also been successfully applied to the analysis of the dehydration kinetics of nedocromil sodium trihydrate. Finally, we explain the model-independent activation energy derived from isothermal kinetic data and the model-dependent activation energy derived from nonisothermal kinetic data.; The knowledge gained from this thesis should provide a fundamental understanding of the physical stability of amorphous phases and their solid-state kinetics and should assist in improving the stability of pharmaceutical products.
机译:已显示无定形形式可改善水溶性差的药物的生物利用度。但是,其固有的结晶趋势在无定形药物的配方中提出了很大的挑战。这项研究旨在从形态热力学量和分子迁移率以及固态动力学方面提供对非晶态药物物理不稳定性(即结晶)的基本了解。使用形成具有不同结晶趋势的非晶相的五种模型化合物,我们已经表明,结构熵和分子迁移率对于确定橡胶态非晶相的结晶趋势同等重要。为了发生自发结晶,具有高构型熵的非晶相需要高分子迁移率。结果,与大的柔性分子相比,需要更大的努力来稳定小的刚性分子的无定形形式。玻璃中的分子迁移率受退火的影响很大,并且随着退火时间的延长而降低。但是,对于新鲜玻璃和退火玻璃,分子迁移率的温度依赖性大致符合Arrhenius方程。利托那韦和硝苯地平玻璃的退火行为不同,这说明了其稳定性的差异。非晶灰黄霉素在 T g 之上和之下容易结晶。我们的结果表明,分子扩散在确定结晶速率中起着重要而非排他的作用。然而,在玻璃态下结晶速率与分子迁移率之间的相关性降低。这种观察结果是由真实玻璃中的分子迁移率高于理想玻璃中的分子迁移率所解释的。通过模型拟合和无模型方法处理了非晶态硝苯地平的结晶动力学。无模型分析提供了更实际的结晶实际过程图,并提供了改进的预测。无模型处理也已成功地用于奈多克罗米三水合钠的脱水动力学分析。最后,我们解释了从等温动力学数据得出的与模型无关的活化能和从非等温动力学数据得出的与模型无关的活化能。从本论文中获得的知识应提供对非晶相的物理稳定性及其固态动力学的基本理解,并应有助于改善药物产品的稳定性。

著录项

  • 作者

    Zhou, Deliang.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemistry Pharmaceutical.; Health Sciences Pharmacology.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 药物化学;药理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号