首页> 外文学位 >Protein-Protein and Protein-Surface Interactions in Anion Exchange Chromatography of Apolipoprotein A-I(Milano).
【24h】

Protein-Protein and Protein-Surface Interactions in Anion Exchange Chromatography of Apolipoprotein A-I(Milano).

机译:载脂蛋白A-I(米兰)的阴离子交换色谱中的蛋白质-蛋白质和蛋白质-表面相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The manufacture of biological products has increased rapidly recently, leading to a greater focus on rational process design and the removal of process bottlenecks, which are commonly found in purification steps. The association of protein molecules can complicate purification when multiple associated forms are present in processing environments. Denaturants, such as urea and guanidine hydrochloride, are frequently used to dissolve inclusion bodies and to prevent association during processing. However, few studies have been conducted to explain how these associative properties or the use of denaturants impact chromatographic purification steps.;In this work, we probe the self-association and ion exchange behavior of apolipoprotein A-IMilano (apo A-IM), using four anion exchange resins, Q-Sepharose-HP, Q-Sepharose-FF, Source-30Q, and Macro-Prep-HQ, and urea as a modifier of protein-protein interactions and protein structure. Macroscopic measurements, such as equilibrium isotherms, batch uptake, and column experiments are used to determine binding capacities, mass transfer rates, and elution behavior under different processing conditions, while microscopic methods, such as refractive index-based microscopy and confocal laser scanning microscopy, are used to provide insight into the underlying mass transfer mechanisms. In addition, protein cross-linking and dynamic light scattering experiments are used to characterize the protein association and diffusivity in solution under various conditions.;Column experiments performed with the strong anion exchangers reveal complex chromatographic behavior for apo A-IM over the range of processing conditions tested. High equilibrium binding capacities are found in the absence of urea for all resins. However, these high binding capacities are accompanied by slow mass transfer and complex elution behavior due to protein self-association. Conversely, ideal elution behavior and rapid mass transfer are observed at high urea concentrations where self-association is minimal, but at the expense of greatly reduced binding capacities. RIBM and CLSM experiments reveal sharp protein fronts in the absence of urea and smooth adsorption fronts in high urea concentrations. Overall, the observed changes in capacity and uptake kinetics as a function of urea are attributed primarily to a transition in transport mechanism from pore to surface diffusion as the urea concentration is increased, due to the formation of a more flexible protein structure.
机译:最近,生物产品的生产迅速增长,导致人们更加关注合理的工艺设计和消除通常在纯化步骤中发现的工艺瓶颈。当加工环境中存在多种相关形式时,蛋白质分子的缔合会使纯化复杂化。变性剂(例如尿素和盐酸胍)经常用于溶解包涵体并防止加工过程中的缔合。但是,很少有研究来解释这些缔合特性或使用变性剂如何影响色谱纯化步骤。在这项工作中,我们探讨了载脂蛋白A-IMilano(apo A-IM)的自缔合和离子交换行为,使用四种阴离子交换树脂Q-Sepharose-HP,Q-Sepharose-FF,Source-30Q和Macro-Prep-HQ,以及尿素作为蛋白质-蛋白质相互作用和蛋白质结构的修饰剂。宏观测量(例如平衡等温线,批处理吸收和柱实验)用于确定不同处理条件下的结合能力,传质速率和洗脱行为,而微观方法(例如基于折射率的显微镜和共聚焦激光扫描显微镜)用于了解潜在的传质机制。此外,还使用蛋白质交联和动态光散射实验来表征溶液在各种条件下的蛋白质缔合和扩散性。;使用强阴离子交换剂进行的柱实验揭示了在整个处理范围内apo A-IM的复杂色谱行为条件测试。对于所有树脂,在不存在尿素的情况下发现了高平衡结合能力。然而,由于蛋白质的自缔合,这些高结合能力伴随着缓慢的传质和复杂的洗脱行为。相反,在高尿素浓度下观察到理想的洗脱行为和快速的传质,其中自缔合极小,但以大大降低的结合能力为代价。 RIBM和CLSM实验揭示了在不存在尿素的情况下蛋白质锋利的前沿和在高尿素浓度下的平滑吸附锋利。总的来说,观察到的容量和吸收动力学随尿素的变化而变化,主要归因于随着尿素浓度的增加,由于形成了更灵活的蛋白质结构,从孔隙到表面扩散的传输机理的转变。

著录项

  • 作者

    Bankston, Theresa.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号