首页> 外文学位 >RNA Structure Prediction: Advancing Both Secondary and Tertiary Structure Prediction.
【24h】

RNA Structure Prediction: Advancing Both Secondary and Tertiary Structure Prediction.

机译:RNA结构预测:促进二级和三级结构预测。

获取原文
获取原文并翻译 | 示例

摘要

RNAs can function without being translated into proteins. These RNAs adopt a structure or structures to perform these functions, and accurate prediction of structure is a valuable tool for understanding these functions. RNA structure is hierarchical, beginning with the primary sequence, then the secondary structure, i.e. the set of canonical pairs, and ultimately the tertiary structure, i.e. the three-dimensional structure.;One significant tool for prediction of secondary structure is the nearest neighbor model. This assumes the free energy change of forming a base pair depends on the identities of the pair and the adjacent pairs. Parameters were previously derived from optical melting on RNA duplexes where it was assumed all strands would be completely duplex or single-stranded. When individual base pairs are allowed to break as a function of temperature, the model does not agree with experiment. A new treatment of the data is presented. The probabilities of individual base pairs are calculated using a partition function, allowing internal loops and frayed ends. The parameters of the nearest neighbor model are recalculated using a nonlinear fit to the original data. These new parameters better fit the data and should provide improved structure prediction.;Homologous RNAs adopt similar structures. One important structural motif is the pseudoknot, a structure difficult to predict and often found near functionally important regions. Combining information from thermodynamics and homology, the TurboKnot algorithm presented here finds ∼80% of known base pairs, and ∼75% of predicted pairs were found in the known structures. Pseudoknots are found with half or better of the false-positive rate of other methods.;Finally, a novel protocol for RNA tertiary structure prediction employing restrained molecular mechanics and simulated annealing is presented. The restraints are from secondary structure, co-variation analysis, coaxial stacking predictions, and, when available, cross-linking data. Results are demonstrated on five different RNAs. The predicted structure is selected from a pool of decoy structures by maximizing radius of gyration and base-base contacts. This approach is sufficient to accurately predict the structure of RNAs compared to current crystal structures, as evaluated by root mean square deviation and the accuracy of base-base contacts.
机译:RNA可以发挥功能而无需翻译成蛋白质。这些RNA采用一种或多种结构来执行这些功能,准确预测结构是了解这些功能的宝贵工具。 RNA结构是分层的,从一级序列开始,然后是二级结构(即规范对的集合),最后是三级结构(即三维结构)。预测二级结构的一个重要工具是最近邻模型。假定形成碱基对的自由能变化取决于该对和相邻对的身份。先前的参数是从RNA双链体的光学熔解获得的,假定所有链都是完全双链或单链的。当允许各个碱基对作为温度的函数断裂时,该模型与实验不一致。提出了一种新的数据处理方法。单个碱基对的概率是使用分区函数计算的,允许内部循环和末端磨损。使用对原始数据的非线性拟合,重新计算最近邻模型的参数。这些新参数更适合数据,并应提供改进的结构预测。同源RNA采用相似的结构。一个重要的结构基序是假结,该假结很难预测并且经常在功能上重要的区域附近发现。结合来自热力学和同源性的信息,此处介绍的TurboKnot算法找到了约80%的已知碱基对,而发现了约75%的预测对在已知结构中。伪结的错误阳性率是其他方法的一半或更高。最后,提出了一种采用限制性分子力学和模拟退火的RNA三级结构预测新方案。限制来自二级结构,协变量分析,同轴堆叠预测以及(如果可用)交叉链接数据。在五个不同的RNA上证实了结果。通过最大化回转半径和基-基接触,从诱饵结构池中选择预测结构。这种方法足以准确预测与当前晶体结构相比的RNA结构,如通过均方根偏差和碱基与碱基的接触精度所评估的那样。

著录项

  • 作者

    Seetin, Matthew G.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Biophysics.;Genetics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号