首页> 外文学位 >Methodology of citrate-based biomaterial development and application.
【24h】

Methodology of citrate-based biomaterial development and application.

机译:基于柠檬酸盐的生物材料开发和应用的方法论。

获取原文
获取原文并翻译 | 示例

摘要

Biomaterials play central roles in modern strategies of regenerative medicine and tissue engineering. Attempts to find tissue-engineered solutions to cure various injuries or diseases have led to an enormous increase in the number of polymeric biomaterials over the past decade. The breadth of new materials arises from the multiplicity of anatomical locations, cell types, and mode of application, which all place application-specific requirements on the biomaterial. Unfortunately, many of the currently available biodegradable polymers are limited in their versatility to meet the wide range of requirements for tissue engineering. Therefore, a methodology of biomaterial development, which is able to address a broad spectrum of requirements, would be beneficial to the biomaterial field.;This work presents a methodology of citrate-based biomaterial design and application to meet the multifaceted needs of tissue engineering. We hypothesize that (1) citric acid, a non-toxic metabolic product of the body (Krebs Cycle), can be exploited as a universal multifunctional monomer and reacted with various diols to produce a new class of soft biodegradable elastomers with the flexibility to tune the material properties of the resulting material to meet a wide range of requirements; (2) the newly developed citrate-based polymers can be used as platform biomaterials for the design of novel tissue engineering scaffolding; and (3) microengineering approaches in the form thin scaffold sheets, microchannels, and a new porogen design can be used to generate complex cell-cell and cell-microenvironment interactions to mimic tissue complexity and architecture.;To test these hypotheses, we first developed a methodology of citrate-based biomaterial development through the synthesis and characterization of a family of in situ crosslinkable and urethane-doped elastomers, which are synthesized using simple, cost-effective strategies and offer a variety methods to tailor the material properties to meet the needs of a particular application. Next, we introduced a new porogen generation technique, and showed the potential application of the newly developed materials through the fabrication and characterization of scaffold sheets, multiphasic small diameter vascular grafts, and multichanneled nerve guides. Finally, the in vivo applications of citrate-based materials are exemplified through the evaluation of peripheral nerve regeneration using multichanneled guides and the ability to assist in injection-based endoscopic mucosal resection therapy.;The results presented in this work show that citric acid can be utilized as a cornerstone in the development of novel biodegradable materials, and combined with microengineering approaches to produce the next generation of tissue engineering scaffolding. These enabling new biomaterials and scaffolding strategies should address many of the existing challenges in tissue engineering and advance the field as a whole.
机译:生物材料在再生医学和组织工程的现代策略中起着核心作用。在过去的十年中,试图找到组织工程解决方案来治疗各种损伤或疾病的尝试导致聚合生物材料的数量急剧增加。新材料的广度来自于解剖学位置,细胞类型和应用方式的多样性,这些都对生物材料提出了特定于应用的要求。不幸的是,许多当前可用的生物可降解聚合物的通用性受到限制,无法满足组织工程的各种要求。因此,一种能够满足广泛需求的生物材料开发方法将对生物材料领域有益。;这项工作提出了一种基于柠檬酸盐的生物材料设计和应用的方法,以满足组织工程的多方面需求。我们假设(1)柠檬酸是人体的一种无毒代谢产物(克雷布斯循环),可以用作通用的多功能单体,并与各种二醇反应生成一种新型的可生物降解的柔软弹性体,并具有调节的灵活性。所得材料的材料性能可满足广泛的要求; (2)新开发的柠檬酸盐基聚合物可作为平台生物材料用于新型组织工程支架的设计; (3)薄支架板,微通道和新的致孔剂设计形式的微工程方法可用于产生复杂的细胞-细胞和细胞-微环境相互作用,以模拟组织的复杂性和结构。为了测试这些假设,我们首先开发了通过合成和表征一系列就地可交联和氨基甲酸乙酯掺杂的弹性体来开发基于柠檬酸盐的生物材料的方法,这些方法使用简单,经济高效的策略合成,并提供多种方法来调整材料性能以满足需求特定应用程序。接下来,我们介绍了一种新的成孔剂生成技术,并通过支架板,多相小直径血管移植物和多通道神经导管的制造和表征,展示了新开发材料的潜在应用。最后,通过使用多通道引导评估外周神经再生以及辅助基于注射的内窥镜黏膜切除治疗的能力,举例说明了基于柠檬酸盐的材料的体内应用。本研究结果表明柠檬酸可以作为开发新型可生物降解材料的基石,并与微工程方法相结合以生产下一代组织工程支架。这些使新的生物材料和支架策略成为可能的方法应该解决组织工程中许多现有的挑战,并从整体上推动该领​​域的发展。

著录项

  • 作者

    Tran, M. Richard.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号