首页> 外文学位 >Long wavelength gallium indium nitrogen arsenide and gallium-indium-nitrogen-arsenic-antimony lasers on gallium arsenide.
【24h】

Long wavelength gallium indium nitrogen arsenide and gallium-indium-nitrogen-arsenic-antimony lasers on gallium arsenide.

机译:砷化镓上的长波长砷化镓铟铟和镓铟氮砷锑激光器。

获取原文
获取原文并翻译 | 示例

摘要

The boom in fiber optic communications has created a high demand for much lower cost lasers in the 1.3–1.6 μm wavelength range for both low cost vertical-cavity surface-emitting lasers (VCSELs) and high-power Raman pumps. This has led to the introduction of dilute nitrogen into GaInAs to reduce the bandgap sufficiently, resulting in a new long wavelength material grown on GaAs. This new material will provide a new platform for low cost and high-speed directly-modulated lasers that are essential for the rapid expansion of optical wide area networks, metro area networks, and local area networks. The requirements for these lasers are a broad operating temperature range (−10 to 90°C) and moderate output power (∼10 mW) in the fundamental mode. There is also a growing interest in higher power lasers, at similar wavelengths, as pumps for Raman amplifiers to expand the available bandwidth and increase power budgets. Research has shown that GaInNAs can be coherently lattice matched to GaAs while providing the proper bandgap energy. These GaAs-based lasers with dilute N can take advantage of the well-developed GaAs processing techniques and superior distributed Bragg reflector mirror technology for VCSELs.; This thesis presents new structures utilizing GaNAs barriers and a new quantum well material, GaInNAsSb, to achieve long-wavelength optical emission in post-annealed material. This increase is accompanied by a blue-shift in the bandgap energy. As a result, the distinct challenge of this material system is to achieve high quality material with sufficiently long wavelength emission. Introduction of nitrogen into the barriers reduces the blue-shift of luminescence by suppressing nitrogen out-diffusion from the quantum wells and decreasing carrier confinement in the quantum wells.; We utilize antimony, both incorporated into the crystal and used as a surfactant, to enable higher indium incorporation. GaNAs or GaNAsSb barriers also reduce the overall strain of the active region because high indium mole fraction quantum wells, GaInNAs and GaInNAsSb, are compressively strained and the GaNAs barriers are tensely strained.; The Molecular Beam Epitaxial growth and demonstration of high-efficiency long-wavelength multiple quantum well GaInNAs(Sb) ridge-waveguide laser diodes using GaNAs(Sb) barriers on GaAs substrate and longer wavelength photoluminescence are described in this work. The wide wavelength range coverage and high output power of GaInNAs and GaInNAsSb lasers grown on GaAs developed in this thesis make these great candidates for both transmitters and optical amplifiers for telecommunications.
机译:光纤通信的蓬勃发展对低成本的垂直腔表面发射激光器(VCSEL)和高功率拉曼泵浦的1.3–1.6μm波长范围内的低成本激光器提出了很高的要求。这导致将稀氮引入GaInAs中以充分降低带隙,从而在GaAs上生长出一种新的长波长材料。这种新材料将为低成本和高速直接调制激光器提供一个新平台,这对于快速扩展广域网,城域网和局域网至关重要。这些激光器的要求是在基本模式下的工作温度范围宽(-10至90°C)和适中的输出功率(〜10 mW)。随着拉曼放大器的泵浦扩展可用带宽并增加功率预算,人们越来越关注具有相似波长的更高功率的激光器。研究表明,GaInNAs可以与GaAs相干晶格匹配,同时提供适当的带隙能量。这些具有稀释N的基于GaAs的激光器可以利用发达的GaAs处理技术和用于VCSEL的出色的分布式布拉格反射镜技术。本文提出了利用GaNAs势垒和新的量子阱材料GaInNAsSb的新结构,以实现后退火材料中的长波长光发射。这种增加伴随着带隙能量的蓝移。结果,该材料系统的显着挑战是获得具有足够长的波长发射的高质量材料。将氮引入到势垒中,通过抑制氮从量子阱中向外扩散并减少量子阱中的载流子限制,从而降低了发光的蓝移。我们利用掺入晶体中并用作表面活性剂的锑来实现更高的铟掺入量。 GaNA或GaNAsSb势垒也降低了有源区的总应变,这是因为高铟摩尔分数量子阱GaInNAs和GaInNAsSb被压缩应变而GaNAs势垒被紧张应变。在这项工作中描述了分子束外延生长以及在GaAs衬底上使用GaNAs(Sb)势垒和更长波长的光致发光的高效长波长多量子阱GaInNAs(Sb)脊形波导激光二极管的演示。本文研究开发的在GaAs上生长的GaInNAs和GaInNAsSb激光器的宽波长范围覆盖和高输出功率,使其成为电信发射器和光放大器的理想之选。

著录项

  • 作者

    Ha, Wonill.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术 ; 光学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号