首页> 外文学位 >A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support.
【24h】

A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support.

机译:用于基础设施地震风险评估和决策支持的贝叶斯网络方法。

获取原文
获取原文并翻译 | 示例

摘要

A Bayesian network methodology is developed for performing infrastructure seismic risk assessment and providing decision support with an emphasis on immediate post-earthquake applications. The methodology consists of four major components: (1) a seismic demand model of ground motion intensity as a spatially distributed Gaussian random field accounting for multiple seismic sources with uncertain characteristics and including finite fault rupture and directivity effects; (2) a model of the performance of point-site and distributed components under seismic loading; (3) models of system performance as a function of component states; and (4) the extension of the Bayesian network to include decision and utility nodes to aid post-earthquake decision-making.;A Bayesian network is a probabilistic graphical model that represents a set of random variables and their probabilistic dependencies. The variables may represent demand or capacity values, or the states of components and systems. Bayesian networks are graphical and intuitive, facilitate information updating, can be used for identification of critical components within a system, and can be extended by decision and utility nodes to solve decision problems. The facility for information updating renders the Bayesian network an ideal tool for infrastructure seismic risk assessment and decision support, particularly in near-real time applications immediately following a destructive earthquake. Evidence on one or more variables (e.g. observed component capacities, demands, or damage states) can be entered into the Bayesian network and this information propagates throughout the network to provide an up-to-date probabilistic characterization of the performance of the infrastructure system under the uncertain and evolving state of information that is characteristic of the post-event period. Like most computational methods, Bayesian networks have limitations. In particular, calculations in Bayesian networks can be highly demanding of computer memory. The present study develops methodologies to minimize computational demands by optimizing network topology and, when necessary, making trade-offs between accuracy and computational efficiency.;The study begins with a brief introduction to Bayesian networks. Next, each of the aforementioned components of the methodology is described. The seismic demand model provides distributions of ground motion intensity at discrete points in the geographic domain of a spatially distributed infrastructure system. This model can be used to perform and go beyond conventional probabilistic seismic hazard assessment. In particular, the model provides a full random field characterization of the ground motion intensity, thus allowing assessment of seismic risk for spatially distributed systems. Equally important, the model enables updating of the distribution of intensity at any selected site upon observation of the intensity at other sites. The modeling of random fields via Bayesian network results in a densely connected topology that renders probabilistic inference computationally demanding and possibly intractable. To address this problem, several approaches for approximating the correlation structure of variables drawn from a random field are developed, which amount to selectively removing links and nodes in the Bayesian network. It is found that a method based on numerical optimization achieves the best trade-off of accuracy versus efficiency.;Bayesian network formulations are presented for modeling component performance as a function of seismic demand using fragility functions. The framework accounts for potential sources of correlation in component response. Models for point-site and distributed components are presented. The latter is based on an assumption that damages along a component occur according to a non-homogenous Poisson process. Five Bayesian network formulations for modeling system performance as a function of component states are developed. One approach uses a naive topology, two formulations are based on an intuitive interpretation of system performance, and two approaches utilize minimal link and cut sets. The last two formulations are then adapted and refined with the goal of minimizing computational demands by arranging nodes in chain-like structures that reduce the size of conditional probability tables and, consequently, required computation time and memory.;The Bayesian network is extended by decision and utility nodes to create a new graphical construct known as an influence diagram. This diagram aids decision-making by specifying decision alternatives that maximize expected utility given all available evidence. The extension of the framework to include decision and utility nodes is demonstrated by application to a post-earthquake decision scenario involving inspection and shutdown decisions. A limited memory influence diagram is constructed to model this decision problem. A heuristic based on a value of information criterion is described for prioritizing component inspections following an earthquake.;Two example applications demonstrate the Bayesian network methodology for infrastructure seismic risk assessment and decision support. The second example employs a preliminary and hypothetical model of the proposed California high speed rail system.
机译:开发了一种贝叶斯网络方法,用于执行基础设施地震风险评估并提供决策支持,重点是即时地震后的应用。该方法包括四个主要部分:(1)地面运动强度的地震需求模型,作为空间分布的高斯随机场,考虑了具有不确定特征的多个地震源,包括有限的断裂破裂和方向性影响; (2)地震作用下点现场和分布式构件的性能模型; (3)作为组件状态函数的系统性能模型; (4)贝叶斯网络的扩展,包括决策和效用节点,以帮助地震后的决策。贝叶斯网络是一种概率图形模型,代表了一组随机变量及其概率依存关系。变量可以表示需求或容量值,或组件和系统的状态。贝叶斯网络是图形直观的,有助于信息更新,可用于识别系统中的关键组件,并且可由决策和实用程序节点扩展以解决决策问题。信息更新功能使贝叶斯网络成为基础设施地震风险评估和决策支持的理想工具,尤其是在破坏性地震发生后立即进行近实时应用中。可以将有关一个或多个变量(例如,观察到的组件容量,需求或损坏状态)的证据输入贝叶斯网络,并且该信息会在整个网络中传播,以提供基础架构系统在以下情况下的性能的最新概率表征。事件后时期所特有的不确定和不断变化的信息状态。像大多数计算方法一样,贝叶斯网络也有局限性。特别是,贝叶斯网络中的计算可能对计算机内存有很高的要求。本研究开发了通过优化网络拓扑并在必要时在准确性和计算效率之间进行权衡的方法来最大程度地减少计算需求的方法。研究从对贝叶斯网络的简要介绍开始。接下来,描述方法的每个前述组成部分。地震需求模型提供了空间分布基础设施系统地理区域中离散点处的地震动强度分布。该模型可用于执行和超越常规概率地震危险性评估。特别是,该模型提供了地面运动强度的完全随机场特征,因此可以评估空间分布系统的地震风险。同样重要的是,该模型能够通过观察其他站点的强度来更新任何选定站点的强度分布。通过贝叶斯网络对随机场进行建模会导致紧密连接的拓扑结构,从而使概率推理的计算要求很高,并且可能难以解决。为了解决这个问题,开发了几种近似于从随机场中得出的变量的相关结构的方法,这些方法相当于有选择地去除贝叶斯网络中的链路和节点。发现基于数值优化的方法在精度与效率之间取得了最佳的折衷。提出了贝叶斯网络公式,用于使用脆性函数对作为地震需求函数的组件性能进行建模。该框架考虑了组件响应中潜在的相关源。提出了用于点站点和分布式组件的模型。后者基于这样的假设:沿着组件的损坏是根据非均匀的Poisson过程发生的。开发了五种贝叶斯网络公式,用于根据组件状态对系统性能进行建模。一种方法使用朴素的拓扑结构,两种表示法基于对系统性能的直观解释,而两种方法则使用最少的链接和割集。然后对最后两个公式进行调整和完善,以通过将节点安排在链状结构中来减少计算需求,从而减少条件概率表的大小,因此,需要计算时间和内存。;决策和实用程序节点扩展了贝叶斯网络,以创建称为影响图的新图形构造。该图通过指定在所有可用证据下均能最大化预期效用的决策选择方案来辅助决策。通过将其应用到涉及检查和关闭决策的地震后决策场景,可以证明该框架扩展到包括决策和实用程序节点。构造了一个有限的内存影响图来对该决策问题进行建模。描述了一种基于信息价值标准的启发式方法,用于优先考虑地震后的组件检查。两个示例应用程序演示了用于基础设施地震风险评估和决策支持的贝叶斯网络方法。第二个示例采用了提议的加利福尼亚高速铁路系统的初步和假设模型。

著录项

  • 作者

    Bensi, Michelle Terese.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 279 p.
  • 总页数 279
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号