首页> 外文学位 >Optical coherent control of a single charged indium arsenide quantum dot.
【24h】

Optical coherent control of a single charged indium arsenide quantum dot.

机译:单电荷砷化铟量子点的光学相干控制。

获取原文
获取原文并翻译 | 示例

摘要

Optically driven self-assembled quantum dots are leading candidates for use in quantum computers because of their potential for high speed gate operations and relatively compact design. In this approach, each dot is charged with a single electron whose spin serves as the quantum bit (qubit). This thesis addresses the need for a universal set of gates to physically implement quantum computing and discusses initial steps toward spin-photon entanglement. Both are addressed through coherent control of the spin state in a magnetic field with optical pulses.;This work experimentally demonstrates coherent rotations of the electron spin. First, the electron spin is rotated at up to 0.5 terahertz about the optical axis by a detuned picosecond optical pulse. The rotation occurs via a nearly resonant stimulated spin-flip Raman process involving a negatively charged exciton (trion). Second, rotation about an orthogonal axis is demonstrated due to electron spin precession about the magnetic field between two detuned optical pulses. The magnitude of the electron g factor is measured to be 0.4, and the rotation speed is 30 gigahertz in a 6.6 Tesla field. Geometric phases are detected in quantum dots for the first time due to cyclic Rabi oscillations driven by a resonant continuous-wave laser. These geometric phases provide another method of spin rotation and can be used in a gate. Any combination of these methods that provides spin rotation about two orthogonal axes can form an arbitrary rotation and together with a phase gate can form any unitary single qubit gate.;Finally, this thesis also presents a detailed experimental procedure for creating a partial entanglement of internal variables within a quantum dot spin-exciton system, as a preliminary step to spin-photon entanglement. It has been proposed that entanglement between non-adjacent qubits in a large qubit network could occur via a photon, fueling research to demonstrate spin-photon entanglement. The experiment proposed here will create the precursor state in 25 picoseconds with a predicted fidelity of 0.985, and the precursor superposition state has a theoretical entropy of entanglement of 0.92.
机译:光驱自组装量子点是量子计算机中使用的领先候选者,因为它们具有高速栅极操作和相对紧凑设计的潜力。用这种方法,每个点都充有一个电子,其自旋用作量子位(qubit)。本文提出了一套通用的门来物理实现量子计算的需求,并讨论了自旋光子纠缠的初始步骤。两者都通过使用光脉冲在磁场中对自旋态进行相干控制来解决。这项工作实验证明了电子自旋的相干旋转。首先,通过失谐的皮秒光脉冲使电子自旋绕光轴旋转多达0.5太赫兹。旋转是通过几乎共振的自旋翻转拉曼过程发生的,该过程涉及带负电的激子(trion)。其次,由于围绕两个失谐光脉冲之间的磁场的电子自旋旋进,证明了绕正交轴的旋转。在6.6特斯拉场中,电子g因子的大小被测量为0.4,旋转速度为30 GHz。由于共振连续波激光器驱动的循环拉比振荡,首次在量子点中检测到几何相位。这些几何相位提供了自旋旋转的另一种方法,可用于浇口中。提供围绕两个正交轴的自旋旋转的这些方法的任何组合都可以形成任意旋转,并且与相位门一起可以形成任何单一的单量子位门。最后,本文还给出了详细的实验过程,以创建内部的部分纠缠。量子点自激激子系统中的一些变量,作为自旋光子纠缠的第一步。已经提出,大量子位网络中非相邻量子位之间的纠缠可能通过光子发生,从而推动了研究以证明自旋光子纠缠。此处提出的实验将在25皮秒内创建预测的保真度为0.985的前体状态,并且前体叠加状态的理论纠缠熵为0.92。

著录项

  • 作者

    Truex, Katherine L.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Quantum.;Physics Condensed Matter.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号