首页> 外文学位 >Electro-thermal nanoprobes for nanometrology and nanofabrication.
【24h】

Electro-thermal nanoprobes for nanometrology and nanofabrication.

机译:用于纳米计量学和纳米加工的电热纳米探针。

获取原文
获取原文并翻译 | 示例

摘要

The atomic force microscope (AFM) is a versatile instrument for studying and manipulating material at nanometer length scales. Localized control of temperature and electric potential with an AFM microcantilever facilitates metrology and fabrication with nanometer precision and relatively low cost. Current self-heating AFM microcantilevers have technological limitations that inhibit their application towards nanofabrication, including difficulty in maintaining tip shape under harsh conditions, an inability to simultaneously control thermal and electric potentials, and inadequate methods for determining tip-substrate interface temperature. This dissertation seeks to address these issues by developing multifunctional AFM microcantilevers for control of thermal and electric fields during tip-based sample interrogation. Microcantilevers are designed, fabricated, characterized, and experimentally tested for applications in nanometrology and nanofabrication.;The first microcantilever introduced in this work is a silicon cantilever whose tip is coated in a thin film of polycrystalline diamond to protect the tip from wear and reduce debris buildup. The tip of a conventional scanning probe changes unpredictably over time due to wear, damage, and the accumulation of debris; this is a significant hurdle preventing the widespread use of AFMs in industry. AFM scans are a convolution of the substrate topography and the scanning tip, so a stable tip shape is critical to establishing the validity of measurements. The device developed in this section of the dissertation has a tip radius as small as 15 nm and an integrated solid-state heater for raising the temperature of the tip. The diamond-coated microcantilever tip was tested for resistance to wear under harsh conditions necessary for tip-based nanofabrication.;The second microcantilever platform described in this dissertation is a silicon cantilever with simultaneous and independent control of temperature and electric potential at the tip. Previous AFM devices have been able to apply localized electric potentials or temperature gradients, but have not been able to do both simultaneously. The present electro-thermal microcantilever combines the functions of heated and electrically-conductive AFM cantilevers. In one device design, electrical separation of the solid-state heater and tip electrode in single-crystal silicon was achieved using selective doping to form semiconductor diodes at the free end of the microcantilever. In an alternate device design, this electrical separation was accomplished using a metal electrode insulated from the heater with thermally grown oxide. Both designs were extensively characterized and demonstrate good electrical isolation between active elements until the voltage potential difference reaches ~ 10 V.;The metalized electro-thermal microcantilever was used to measure thermoelectric voltage of a thermocouple point contact for determining tip-substrate interface temperature. The interface temperature between a nanometer-scale tip and substrate has been historically difficult to establish. In this work, the interface temperature is directly measured as a function of cantilever heater temperature during tip-side heating, which circumvents the need for calibration on temperature-sensitive materials requiring constant tip-substrate thermal conductance. When the non-dimensional cantilever heater temperature is 1, the tip-substrate interface temperature is 0.593 on glass and 0.125 on quartz. The measurements match well with a resistor network model that assumes the interfacial contact resistance is 108 K/W. This interface temperature calibration technique is appropriate for substrates with thermal conductivity < 20 W/mK.;Finally, a heated nanoprobe was fabricated whose sharp tip has a conformal coating of a thin, crystalline ferroelectric material. The ferroelectric-coated nanoprobes demonstrate tip polarization switching with the intention of being used for enhanced pyroelectric electron emission.
机译:原子力显微镜(AFM)是用于研究和操纵纳米级尺度材料的多功能仪器。利用AFM微悬臂梁对温度和电势进行局部控制有助于以纳米精度和相对较低的成本进行计量和制造。当前的自加热AFM微悬臂梁具有技术上的局限性,从而限制了其在纳米加工中的应用,包括难以在恶劣条件下保持尖端形状,无法同时控制热和电势以及确定尖端-基底界面温度的方法不足。本文旨在通过开发多功能AFM微悬臂梁来解决这些问题,以控制基于尖端的样品询问过程中的热和电场。设计,制造,表征和测试了微悬臂梁,以用于纳米计量学和纳米加工。;这项工作中引入的第一个微悬臂梁是硅悬臂梁,其尖端涂有一层多晶金刚石薄膜以保护尖端免受磨损并减少碎屑。建立。由于磨损,损坏和碎屑的积累,传统扫描探针的尖端会随时间变化而无法预测。这是阻碍AFM在工业中广泛使用的重大障碍。 AFM扫描是基材形貌和扫描针尖的卷积,因此稳定的针尖形状对于确定测量的有效性至关重要。在本文的这一部分中开发的设备的尖端半径小至15 nm,并且集成了固态加热器,用于提高尖端温度。测试了金刚石涂层的微悬臂梁尖端在基于尖端的纳米制造所必需的苛刻条件下的耐磨性。本论文介绍的第二个微悬臂梁平台是硅悬臂梁,可同时独立控制尖端的温度和电势。先前的AFM设备已经能够施加局部电势或温度梯度,但是不能同时进行这两种操作。本发明的电热微悬臂梁结合了加热的和导电的AFM悬臂的功能。在一种器件设计中,使用选择性掺杂在微悬臂梁的自由端形成半导体二极管,从而实现了单晶硅中固态加热器和尖端电极的电分离。在另一种设备设计中,这种电分离是通过使用热生长的氧化物与加热器绝缘的金属电极完成的。两种设计都经过了广泛的表征,并显示出有源元件之间的良好电隔离,直到电压电势差达到〜10 V 。;使用金属化的电热微悬臂梁来测量热电偶点接触的热电电压,以确定尖端与基底的界面温度。历史上一直难以确定纳米级尖端和基底之间的界面温度。在这项工作中,在尖端侧加热期间,直接测量界面温度与悬臂加热器温度的函数关系,这避免了对需要恒定尖端-基底热导的热敏材料进行校准的需要。当无量纲悬臂加热器温度为1时,玻璃上的尖端-基材界面温度为0.593,石英上为0.125。这些测量值与假定界面接触电阻为108 K / W的电阻器网络模型非常匹配。此界面温度校准技术适用于导热率<20 W / mK的基板。最后,制造了加热的纳米探针,其尖锐的尖端具有薄的结晶铁电材料的保形涂层。铁电涂覆的纳米探针表现出尖端极化转换,旨在用于增强的热释电子发射。

著录项

  • 作者

    Fletcher, Patrick C.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.;Nanotechnology.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号