首页> 外文学位 >A parallel algorithm for matrix assembly in mesh-free methods.
【24h】

A parallel algorithm for matrix assembly in mesh-free methods.

机译:无网格方法中矩阵装配的并行算法。

获取原文
获取原文并翻译 | 示例

摘要

When solving partial differential equations numerically, the continuous problem is discretized and represented by a system of linear equations. The matrix representation of the discrete problem is built by a process known as data assembly. Finite Element Method (FEM) discretizations are based on a mesh. Data assembly is fairly simple for FEMs, but problems are encountered with discontinuous PDEs and expensive remeshing is required for adaptive FEMs. An alternative to FEMs are a class of Meshfree methods, in which the discretizations are based on nodes. For meshfree Galerkin methods, solutions are constructed using a collection of basis functions. Data assembly in meshfree methods is more complicated than for FEMs, in that sparsity pattern of the matrices involved is not as regular as it is in FEMs, where the (i, j)th entry is nonzero if node i is adjacent to node j. For meshfree methods, the (i, j)th entry is nonzero if nodes i and j lie in the intersection of the supports of the basis functions associated with nodes i and j. This leads to a computational geometry problem which must be solved. We solve the following problem: Given a collection of N sets (d-rectangles or d-spheres) S i and P points xk in Rd compute Ik = {lcub}(i, j) | xkSi Sj{rcub}. We describe a computationally efficient implementation for d = 2 using quadtrees to solve I( k) = {lcub}i | xk Si{rcub} from which Ik can easily be produced. The results may be extended to Rd using 2d-trees (for example, octrees for the case d = 3). In this thesis we describe a parallel algorithm for solving this problem. Parallel issues of load balancing and characteristics of the collections of sets and points that are used in applications which have implications for the performance of the algorithm are considered theoretically and also exhibited through numerical examples.
机译:当数值求解偏微分方程时,连续问题被离散化并由线性方程组表示。离散问题的矩阵表示由称为数据组装的过程构建。有限元方法(FEM)离散化基于网格。对于FEM来说,数据组装是相当简单的,但是不连续的PDE会遇到问题,而自适应FEM则需要昂贵的重新格式化。 FEM的替代方法是一类Meshfree方法,其中离散化基于节点。对于无网格Galerkin方法,使用一组基本函数构造解决方案。无网格方法中的数据组装比FEM更为复杂,因为所涉及的矩阵的稀疏模式不像FEM中那样规则,其中第( i,j )个条目如果为节点则为非零 i 与节点 j 相邻。对于无网格方法,如果节点 i j 位于基础支撑的交点中,则第( i,j )个条目不为零。与节点 i j 相关的功能。这导致必须解决的计算几何问题。我们解决了以下问题:给定 N 集( d -矩形或 d -球体)的集合 S i P R x k 点> d 计算 I k = {lcub} ()| x k S i S j {rcub}。我们使用四叉树描述 d = 2的计算有效实现,以解决 I k )= {lcub} i | x k S i {rcub},其中 I k 很容易产生。结果可能扩展到 R d 使用2 d -树(例如,案例 d = 3的八叉树)。在本文中,我们描述了一种用于解决此问题的并行算法。从理论上考虑了负载平衡和应用程序中使用的集合和点的集合特性的并行问题,这些问题对算法的性能有影响,并且还会通过数值示例进行展示。

著录项

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.1751
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号