首页> 外文学位 >Autonomous entropy-based intelligent experimental design.
【24h】

Autonomous entropy-based intelligent experimental design.

机译:基于自主熵的智能实验设计。

获取原文
获取原文并翻译 | 示例

摘要

The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner.;Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method.;Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment.;We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same goal in an automated fashion.
机译:本文的目的是探索概率论和信息论在实验设计中的应用,并以一种全面而一致的方式将我们对推理和查询的认识结合起来。;当今的科学前沿涉及数据收集以不断增加的速度。这要求我们找到一种以自动化方式收集最相关数据的方法。通过遵循科学方法的逻辑,我们将推理引擎与查询引擎耦合在一起,以自动化科学学习的迭代过程。推理引擎涉及贝叶斯机器学习技术,可基于先验信息和先前收集的数据来估计模型参数,而查询引擎则执行数据驱动的探索。通过选择预期结果的分布具有最大熵的实验,查询引擎将选择使预期信息增益最大化的实验。耦合的推理和查询引擎构成了用于科学探索的自主学习方法。我们将其应用到机械臂上,以证明该方法的有效性。优化查询包括寻找一个平均而言有望提供最大信息的实验。如果一组潜在的实验由许多参数描述,则搜索涉及到高维熵空间。在这种情况下,蛮力搜索方法将很慢并且计算量很大。我们开发了一种基于熵的搜索算法,称为嵌套熵采样,以选择最有信息的实验。这有助于减少找到最佳实验所需的计算量。;我们还扩展了熵的最大化方法,并开发了一种最大化联合熵的方法,以便可以将其用作两个机器人之间协作的原理。这是本论文的主要成就,因为它允许两个机器人单元之间基于信息的协作以自动化的方式实现相同的目标。

著录项

  • 作者

    Malakar, Nabin Kumar.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Statistics.;Physics Theory.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号