首页> 外文学位 >Mechanisms of VOC oxidation and aerosol formation: Atmospheric organic chemistry of glyoxal.
【24h】

Mechanisms of VOC oxidation and aerosol formation: Atmospheric organic chemistry of glyoxal.

机译:VOC氧化和气溶胶形成的机理:乙二醛的大气有机化学。

获取原文
获取原文并翻译 | 示例

摘要

Secondary organic aerosol (SOA) has impacts on both global climate and human health, but its formation and properties are not well characterized. To understand the formation and relative importance of individual compounds to SOA formation, we must understand their gas-phase production and their potential to form aerosol. Glyoxal, a product of volatile organic carbon oxidation, is a potentially critical component of atmospheric aerosol. As current atmospheric models overestimate glyoxal mixing ratios, chamber studies of OH- initiated, high-NOx isoprene oxidation were performed. The Master Chemical Mechanism v. 3.1 was updated with first generation yields which had not previously included. Also, glyoxal production via secondary production via C5 carbonyls was attenuated to account for the MCM's overprediction of higher-generation production. The updated mechanism enables improved modeling of gas -phase production of glyoxal.;In order to gain insight into processes controlling SOA formation from glyoxal, chamber studies of glyoxal uptake onto ammonium sulfate aerosol were performed under dark and irradiated conditions and in the presence of OH. The chemical composition of aerosol formed from glyoxal and the glyoxal uptake rate were determined to be independent of OH. The glyoxal uptake coefficient is directly proportional to relative humidity and decreases exponentially as a function of glyoxal exposure. Glyoxal monomers and oligomers were the dominant organic compounds formed in the aerosol; their formation was reversible under dark conditions. However, the formation of 1H-imidazole-2-carboxaldehyde from glyoxal reacting with the aerosol seed was irreversible. To our knowledge, this is the first time carbon-nitrogen compounds resulting from condensed phase reactions with ammonium sulfate seed have been detected in aerosol. An organosulfate, previously assigned as glyoxal sulfate in ambient samples and chamber studies of isoprene oxidation, was observed only in irradiated experiments. Through a laboratory standard, this organosulfate has been shown to be glycolic acid sulfate, an isomer of the previously proposed glyoxal sulfate. This work highlights the importance of aerosol organic chemistry and improves our understanding of formation and chemical and optical properties of aerosol as a means to improving atmospheric models.
机译:次生有机气溶胶(SOA)对全球气候和人类健康都有影响,但其形成和性质尚未得到很好的表征。要了解单个化合物的形成及其对SOA形成的相对重要性,我们必须了解它们的气相产生及其形成气雾剂的潜力。乙二醛是挥发性有机碳氧化的产物,是大气气溶胶的潜在关键组成部分。由于当前的大气模型高估了乙二醛的混合比例,因此进行了由OH引发的高NOx异戊二烯氧化的室内研究。主化学机制第3.1版更新了以前未包括的第一代产量。此外,通过C5羰基的二次生产产生的乙二醛产量也减少了,以解释MCM对上一代生产的高估。更新的机制可以改善乙二醛气相生产的建模。;为了深入了解控制乙二醛形成SOA的过程,在黑暗和辐照条件下,在有OH的条件下进行了乙二醛对硫酸铵气溶胶吸收的室内研究。 。确定由乙二醛形成的气溶胶的化学组成和乙二醛的吸收速率与OH无关。乙二醛的吸收系数与相对湿度成正比,并随乙二醛的暴露呈指数下降。乙二醛单体和低聚物是在气溶胶中形成的主要有机化合物。它们的形成在黑暗条件下是可逆的。然而,乙二醛与气溶胶种子反应形成的1H-咪唑-2-甲醛是不可逆的。据我们所知,这是首次在气溶胶中检测到与硫酸铵种子的冷凝相反应产生的碳氮化合物。仅在辐照实验中观察到一种有机硫酸盐,以前在环境样品和异戊二烯氧化的室内研究中被指定为乙二醛硫酸盐。通过实验室标准,已证明该有机硫酸盐为乙醇酸硫酸盐,其是先前提出的乙二醛硫酸盐的异构体。这项工作突出了气溶胶有机化学的重要性,并增进了我们对气溶胶的形成以及化学和光学性质的了解,以此作为改善大气模型的一种手段。

著录项

  • 作者

    Galloway, Melissa M.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Atmospheric Chemistry.;Chemistry Physical.;Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号