首页> 外文学位 >Examination of structure-performance correlations in low band gap polymer solar cells.
【24h】

Examination of structure-performance correlations in low band gap polymer solar cells.

机译:低带隙聚合物太阳能电池的结构性能相关性检验。

获取原文
获取原文并翻译 | 示例

摘要

Organic photovoltaics, or OPVs, are an attractive potential source of low-cost renewable energy. One of the principle design considerations for OPVs is that light absorption creates a bound electron-hole pair, or exciton. To generate electricity in a device, excitons are dissociated at the interface between two dissimilar organic semiconductors, known as electron donors and electron acceptors. The efficiency of this organic heterojunction relies on the optoelectronic properties of each material as well as a nanostructured morphology between elecron donor and acceptor phase domains. Such systems have received significant research attention in the past decade. Recent advances in novel semiconducting materials to generate large open circuit voltage, Voc, and harvest a broader fraction of the sun's light have produced efficiencies as high as 8%. Further improvements require the additional development of such materials as well as an improved rational understanding of device operation.;The application of two low band gap electron donating semiconducting polymers in OPVs has been explored. These materials, poly(3-hexylthienylene vinylene) (P3HTV) and a copolymer of isothianaphthene, thiophene, and benzothiadiazole (PITN-co-ThBTD), were first optimized in bulk heterojunction blends with the electron acceptor [6,6]-phenyl C61-butyric acid methyl ester (PCBM). These materials were subsequently incorporated in a bilayer device architecture with C60 as the electron acceptor. Thermal annealing to mix the layers improves exciton dissociation and suppresses dark current, leading to an increase in Voc and improved efficiency.;Spurred by the relation between dark current and Voc, fundamental device measurements were performed to improve basic understanding of OPV device operation. The roles of heterojunction architecture, processing conditions, and chemical structure on dark current in poly(alkylthiophene) and poly(thienylene vinylene) devices were examined through temperature dependent current-voltage measurements and correlated with observed Voc under illumination.
机译:有机光伏(OPV)是低成本可再生能源的诱人潜在来源。 OPV的主要设计考虑因素之一是光吸收会产生束缚的电子-空穴对或激子。为了在设备中发电,激子在两种不同的有机半导体(称为电子给体和电子受体)之间的界面处解离。这种有机异质结的效率取决于每种材料的光电特性以及电子给体和受体相域之间的纳米结构形态。在过去的十年中,这样的系统受到了重要的研究关注。新型半导体材料的最新进展是产生大的开路电压Voc,并收集更广泛的太阳光,其效率高达8%。进一步的改进需要这种材料的进一步开发以及对装置操作的更合理的理解。;已经探索了两种低带隙给电子的半导体聚合物在OPV中的应用。这些材料,聚(3-己基亚苯基亚乙烯基)(P3HTV)和异噻吩并菲,噻吩和苯并噻二唑的共聚物(PITN-co-ThBTD),首先在与电子受体[6,6]-苯基C61的本体异质结共混物中进行了优化。 -丁酸甲酯(PCBM)。这些材料随后以C60作为电子受体并入双层器件结构中。热退火以混合各层可改善激子离解并抑制暗电流,从而导致Voc的增加和效率的提高。;在暗电流与Voc之间的关系的刺激下,进行了基本器件测量,以提高对OPV器件操作的基本了解。通过与温度相关的电流-电压测量来检查异质结结构,加工条件和化学结构对聚(烷基噻吩)和聚(噻吩亚乙烯基)设备中暗电流的作用,并通过与温度相关的电流-电压测量来进行检查,并将其与照明下的Voc相关联。

著录项

  • 作者

    Stevens, Derek M.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Alternative Energy.;Engineering Materials Science.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号