首页> 外文学位 >Atomic engineering of giant magnetoresistance spin valves using surfactants.
【24h】

Atomic engineering of giant magnetoresistance spin valves using surfactants.

机译:使用表面活性剂的巨磁阻自旋阀的原子工程。

获取原文
获取原文并翻译 | 示例

摘要

Giant magnetoresistance (GMR) magnetic multilayers have been one of the most attractive research topics with the most intense research efforts around the world.; In the present study, effects of various coupling mechanisms in GMR spin valves (SV) were studied. Switching dynamics of spin valves and each permutation which make up a spin valve, were systematically and intensively investigated by real time domain structure analysis. Magnetic behavior and dynamics of domain structure were intensively studied by applying the interference-contrast colloid (ICC) technique. A complete set of the coupling mechanism system was thus established for a GMR SV to explain the enhanced coercivity qualitatively and the strength of exchange coupling quantitatively. To control the microstructure, and in order to modify magnetic properties of spin valves, atomic engineering using surfactants was introduced and the efficiency of surfactants was investigated. Ag and Pb-Ag were selected as the surfactants to significantly alter the interfacial characteristics and to improve the GMR effect dramatically. In plane magnetization and GMR loops were measured for both surfactant free and surfactant containing samples. Conventional transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and in-situ scanning tunneling microscopy (STM) were employed to analyze the relationship between characteristics of crystal, surfaces, interfaces and magnetic properties, such as GMR ratio, coercivity, Hc, and exchange coupling, H E. Roughness induced pinholes were discovered, especially in surfactant free GMR spin valves. A new statistical model that takes into account topographic characteristics of the spacer was developed to evaluate the strength of pinhole coupling quantitatively. The effectiveness of the statistical model was discussed and compared to the experimental data that were obtained from spin valves with different interfacial characteristics. (Abstract shortened by UMI.)
机译:巨磁阻(GMR)磁性多层膜已成为世界上最吸引人的研究课题之一,并进行了最深入的研究。在本研究中,研究了各种耦合机制对GMR自旋阀(SV)的影响。通过实时域结构分析,系统,深入地研究了自旋阀的切换动力学和组成自旋阀的每个排列。利用干涉对比胶体(ICC)技术深入研究了磁畴行为和磁畴结构的动力学。因此,为GMR SV建立了一套完整的耦合机制系统,以定性地解释增强的矫顽力和定量地交换交换的强度。为了控制微结构并改变自旋阀的磁性能,引入了使用表面活性剂的原子工程,并研究了表面活性剂的效率。选择Ag和Pb-Ag作为表面活性剂可显着改变界面特性并显着改善GMR效果。对于不含表面活性剂的样品和含表面活性剂的样品,均测量了平面磁化强度和GMR回路。利用常规透射电子显微镜(TEM),高分辨率透射电子显微镜(HRTEM)和<斜体>原位>扫描隧道显微镜(STM)分析晶体特性,表面,界面和磁性之间的关系。 GMR比,矫顽力H c 和交换耦合H E 等特性。发现了引起粗糙度的针孔,特别是在无表面活性剂的GMR旋转阀中。开发了一种新的统计模型,该模型考虑了垫片的形貌特征,以定量评估针孔耦合的强度。讨论了统计模型的有效性,并将其与从具有不同界面特性的旋转阀获得的实验数据进行了比较。 (摘要由UMI缩短。)

著录项

  • 作者

    Yang, Xiaoyu.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号