首页> 外文学位 >Fabrication and characterization of multi-functional nonspherical particles via mechanical deformation.
【24h】

Fabrication and characterization of multi-functional nonspherical particles via mechanical deformation.

机译:通过机械变形制备和表征多功能非球形颗粒。

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles bridge the gap between bulk materials and molecules. They possess exciting but contrasting mechanical, chemical, magnetic and optical properties when compared to their bulk counterparts due to their shape and size. When the size of noble metal nanoparticles is reduced to less than the wavelength of light, the particles intensely absorb and scatter light at wavelengths that depend on the particle size, shape, and local dielectric environment due to Localized Surface Plasmon Resonance (LSPR) modes. Recently, plasmonic particles have been used in a wide variety of sensor and optical device applications including immunoassays and surface enhanced Raman spectroscopy substrates. Controlling nanoparticle shape and resonance is essential for tuning these nanoparticles for a given application. Thus, fabrication of particles with different sizes and morphologies has been under research for a long time. The most prevalent methods for this purpose have been chemical synthesis and nano lithographic techniques. Mechanical deformation is an alternative method to control particle shape. This approach has been largely ignored since Faraday's pioneering work on converting gold particles into films by beating. Here we report a simple, but effective technique to control particle shape and LSPR wavelength via physical deformation of metal nanoparticles (∼50–100nm diameter). Particle size and shape is characterized using both electron microscopy and atomic force microscopy, while LSPR red-shifts are observed with dark-field spectroscopy. Controlling the shape and size of deformed particles requires quantification of force applied. A spring loaded instrument has been designed for this purpose and force applied on the particles and consequent deformation has been studied. This deformation method has also been applied to polystyrene, magnetic and hybrid micro and nano spheres. The processing technique employed here has potential for rapid and inexpensive tuning of nanoparticle shape and resonance while preserving particle volume. Thus, we establish a proof-of-principle depicting the validity of mechanical deformation as a means of fabricating non spherical particles of different functionalities.
机译:纳米粒子弥合了散装材料和分子之间的鸿沟。与它们的同类产品相比,由于其形状和尺寸,它们具有令人兴奋但对比鲜明的机械,化学,磁性和光学性能。当贵金属纳米粒子的尺寸减小到小于光的波长时,由于局部表面等离子体共振(LSPR)模式,粒子会强烈吸收和散射特定波长的光,该波长取决于粒子的大小,形状和局部介电环境。最近,等离激元粒子已用于各种传感器和光学设备应用中,包括免疫测定和表面增强拉曼光谱学底物。对于给定的应用,控制纳米粒子的形状和共振对于调整这些纳米粒子至关重要。因此,长期以来一直在研究具有不同尺寸和形态的颗粒的制造。为此目的最普遍的方法是化学合成和纳米光刻技术。机械变形是控制颗粒形状的另一种方法。自从法拉第(Faraday)通过打浆将金颗粒转化为薄膜的开创性工作以来,这种方法已被很大程度上忽略。在这里,我们报告了一种简单但有效的技术,可通过金属纳米粒子(直径约50-100nm)的物理变形来控制粒子形状和LSPR波长。使用电子显微镜和原子力显微镜对颗粒的大小和形状进行表征,而在暗场光谱学中则观察到LSPR红移。控制变形颗粒的形状和大小需要量化施加的力。为此设计了一种弹簧加载的仪器,并且研究了施加在颗粒上的力以及由此引起的变形。此变形方法也已应用于聚苯乙烯,磁性以及杂化的微球和纳米球。此处采用的处理技术具有在保持颗粒体积的同时快速,廉价地调整纳米颗粒形状和共振的潜力。因此,我们建立了一个原理证明,描述了机械变形作为制造具有不同功能的非球形颗粒的一种手段的有效性。

著录项

  • 作者

    Varahagiri, Venkata Shilpa.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2011
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号