首页> 外文学位 >Wavefront sensing and reconstruction using a twisted nematic liquid crystal device.
【24h】

Wavefront sensing and reconstruction using a twisted nematic liquid crystal device.

机译:使用扭曲向列液晶设备进行波前感测和重建。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation a closed-loop adaptive-optics system is introduced using a twisted nematic liquid-crystal television (LCTV) as an “adaptive” Shack-Hartmann wave front sensor (SHWS). Unlike a conventional SHWS, this sensor uses three innovative techniques as it tracks the Hartmann spot movements while monitoring the input irradiance of each subaperture. (1) Adaptive lenslet generation: the system writes an adaptive lenslet array directly onto the LCTV so that each subaperture generates a focal spot at the focal length of the lenslet array. The focal spots move around if turbulence exists in the system, therefore the locations of the distorted focal spots are computed using a centroid algorithm and used to correct the local tilted wave fronts. (2) Zonal fitting: using the centroid shift data from all of the subapertures of the lenslet array, the incident wave front is estimated and a continuous phase screen is reconstructed using a zonal fitting method. (3) Subaperture area adaptation: the adaptive Shack-Hartmann wave front sensor detects and responds to significant variations in subaperture irradiance by automatically changing the number of subapertures in the lenslet array to match the input irradiance at each lenslet. Therefore, when this flexible SHWS is used under conditions of low irradiance on the telescope (i.e., when scintillation is present), the number of subapertures is decreased in order to increase the area of spatial integration and thus collect more photons per subaperture. Existing systems increase the integration time to collect more photons, thereby enabling continued (albeit somewhat degraded) telescope operation under poor seeing (low irradiance) conditions. A comparison of the two methods (increased integration time versus increased integration area using larger subapertures) shows that an increased integration area (subaperture size) causes the residual wave front error to increase by about 1/3 as much as an equivalent increase in integration time (i.e., to collect the same number of photons).
机译:在本文中,介绍了一种使用扭曲向列液晶电视(LCTV)作为“自适应” Shack-Hartmann波前传感器(SHWS)的闭环自适应光学系统。与传统的SHWS不同,此传感器在跟踪Hartmann光斑运动的同时监视每个子孔径的输入辐照度,因此采用了三种创新技术。 (1)自适应小透镜的生成:系统将自适应小透镜阵列直接写入LCTV,以便每个子光圈在小透镜阵列的焦距处生成一个焦点。如果系统中存在湍流,则焦点会四处移动,因此使用质心算法计算出失真的焦点的位置,并将其用于校正局部倾斜的波前。 (2)区域拟合:使用小透镜阵列所有子孔径的质心偏移数据估算入射波前,并使用区域拟合方法重建连续相位屏蔽。 (3)子孔径区域自适应:自适应Shack-Hartmann波前传感器通过自动更改小透镜阵列中的子孔径数量以匹配每个小透镜的输入辐照度,来检测子孔径辐照度的重大变化并做出响应。因此,当在望远镜的低辐照条件下(即,当存在闪烁时)使用这种柔性SHWS时,子孔径的数量减少,以便增加空间积分的面积,从而每个子孔径收集更多的光子。现有系统增加了收集更多光子的积分时间,从而在弱视(低辐照度)条件下能够继续(尽管性能有所下降)望远镜操作。两种方法的比较(增加的积分时间与使用较大的子孔径增加的积分面积)显示,增加的积分面积(凹孔尺寸)会导致残留波前误差增加大约1/3,相当于增加的积分时间(即,收集相同数量的光子)。

著录项

  • 作者

    Rha, Jungtae.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

  • 入库时间 2022-08-17 11:45:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号