首页> 外文学位 >Computational studies of the heat transfer and fluid flow in lubrication and coating problems.
【24h】

Computational studies of the heat transfer and fluid flow in lubrication and coating problems.

机译:润滑和涂层问题中的传热和流体流动的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

The current research is focused on the mathematical modeling and computational implementation of the problems arising in materials processing. In particular, emphasis will be on mixing and coating, including transient and free surface flows of Newtonian and non-Newtonian fluids. In addition, the heat conduction in complex domains will be considered.;A hybrid boundary element method (HBEM) is developed to solve planar steady-state heat conduction problems for domains involving thick and thin regions. Many polymer-processed parts are typically thin, and a thin-shell approach can therefore be used. However, the part usually involves a thick region as well, which is typically present around corners. The proposed formulation consists of combining the thin-shell approximation in the thin sub-domain with conventional BEM in the thick sub-domain. The method is validated upon comparison against the fully BEM approach.;The three-dimensional transient free surface flow inside cavities of arbitrary shape is examined using an adaptive (Lagrangian) boundary-element approach. The fluid is assumed to be incompressible and Newtonian, under creeping conditions. A simple algorithm is developed for mesh refinement of the deforming free surface mesh. The method is used to determine the flow field and free surface evolution inside cubic, rectangular and cylindrical containers. Surface tension effects are also explored.;The three-dimensional Stokes flow in a periodic domain is then investigated. The problem corresponds closely to the flow inside internal mixers, where the flow is driven by the movement of a rotating screw and the outer barrel remaining at rest. A hybrid spectral/finite-difference approach is proposed for the general expansion of the flow field and the solution of the expansion coefficients. The method is used to determine the flow field between the screw and barrel. The regions of elongation and shear are closely examined since these are the two mechanisms responsible for mixing performance.;In this thesis, a heavy emphasis is placed on the flow of Newtonian and non-Newtonian thin films, typically as encountered in transient coating processes. Both two-dimensional and axisymmetric flows are considered. The fluid emerges from a channel (or an annular tube) and is driven by a pressure gradient maintained inside the channel (or annulus). The governing equations dictating the flow are thin-film equations of the 'boundary layer type', which are solved by expanding the flow field in terms of orthonormal modes in the depthwise direction, and using the Galerkin projection, combined with a time-stepping implicit scheme, and integration along the flow direction using a sixth order Runge-Kutta method. The generalized-Newtonian, non-Newtonian as well as viscoelastic fluids are examined to investigate the effect of inertia, gravity and the substrate topography subjected to different initial conditions. In addition, the hyperbolic nature of the thin-film equation is further investigated analytically using the method of characteristics. An excellent agreement has been found in the limit of steady-state flow of a Newtonian fluid upon comparison against the similarity solution for liquid spreading.
机译:当前的研究集中在材料加工中出现的问题的数学建模和计算实现上。特别地,重点将放在混合和涂覆上,包括牛顿流体和非牛顿流体的瞬时和自由表面流。此外,还将考虑复杂区域中的热传导。提出了一种混合边界元方法(HBEM)来解决涉及厚区域和薄区域的区域的平面稳态导热问题。许多经过聚合物处理的零件通常很薄,因此可以使用薄壳方法。但是,零件通常也包含较厚的区域,该区域通常存在于拐角处。提议的公式包括将薄子域中的薄壳近似与厚子域中的常规BEM组合在一起。通过与完全边界元方法进行比较,验证了该方法的有效性。使用自适应(拉格朗日)边界元方法检查了任意形状的腔体内的三维瞬态自由表面流。假定在蠕变条件下流体是不可压缩的牛顿流体。开发了一种用于变形自由表面网格的网格细化的简单算法。该方法用于确定立方,矩形和圆柱形容器内的流场和自由表面演变。还研究了表面张力效应。;然后研究了周期域中的三维斯托克斯流。该问题与内部混合器内部的流动密切相关,在内部混合器中,流动是由旋转螺杆的运动驱动的,而外筒则保持静止。针对流场的一般扩展和扩展系数的求解,提出了一种混合频谱/有限差分方法。该方法用于确定螺杆和机筒之间的流场。由于这是影响混合性能的两个机理,因此要仔细检查伸长和剪切区域。在本文中,重点放在牛顿型和非牛顿型薄膜的流动上,这通常是在瞬态涂覆过程中遇到的。二维流和轴对称流均被考虑。流体从通道(或环形管)流出,并由保持在通道(或环形空间)内部的压力梯度驱动。控制流动的控制方程是“边界层类型”的薄膜方程,通过在深度方向上按正交模式扩展流场并使用Galerkin投影并结合隐式时间步进行求解。方案,并使用六阶Runge-Kutta方法沿流动方向进行积分。对广义牛顿,非牛顿以及粘弹性流体进行了研究,以研究惯性,重力和在不同初始条件下基底形貌的影响。另外,使用特征方法进一步分析了薄膜方程的双曲性质。通过与用于液体扩散的相似性解决方案进行比较,已发现牛顿流体的稳态流量极限是一个极好的协议。

著录项

  • 作者

    Kim, Kyu-Tae.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 315 p.
  • 总页数 315
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号