首页> 外文学位 >Process design and scale-up of counter-current chromatography for the fractionation and recovery of polyketide antibiotics.
【24h】

Process design and scale-up of counter-current chromatography for the fractionation and recovery of polyketide antibiotics.

机译:用于分馏和回收聚酮化合物抗生素的逆流色谱法的工艺设计和放大。

获取原文
获取原文并翻译 | 示例

摘要

Regulatory constraints on products of the modern biotechnology industry require final dosage forms to exhibit high and consistent levels of purity. At the same time, financial constraints on process development require cost-effective purification methods to be found. Counter-current chromatography (CCC) is a liquid-liquid chromatographic technique, in which solutes are fractionated based on their selective partitioning between two immiscible liquid phases. The absence of a solid support, as in conventional HPLC, overcomes problems of irreversible adsorption and pore diffusion, and ensures that CCC is a low pressure operation. Although an established analytical scale technique, widespread use of CCC has been hampered by the lack of generic and robust method development strategies and well-engineered industrial scale machines. This project has examined the operation and scale-up of novel J-type CCC devices for application as a generic and scalable high-resolution purification technique. The fractionation of the chemical pharmaceutical erythromycin A (EA) from its structurally similar analogues was used as a test system since this provides a difficult and realistic separation challenge, Initial research addressed the need for a generic method development strategy to increase the speed of CCC phase system selection and identification of the optimal run mode. For the purification of EA, a broad polarity quaternary phase system consisting of hexane/ethyl acetate/methanol/water was identified. Results from a matrix of simple equilibrium partition experiments were used to identify a suitable solvent system for use firstly in gradient elution mode. Based on these results, an optimised reverse phase isocratic separation was then selected which enabled the separation of EA from all of its closely related biosynthetic analogues. Subsequent optimisation studies, using a model erythromycin mixture, addressed the impact of solute loading and mobile phase flow rate on EA purity, column efficiency and throughput in a laboratory scale J-type CCC device. Under optimal conditions (8 mL.min-1; 0.6 g solute loading) a maximum throughput of 0.097 kg.day-1 could be achieved, with an EA purity and yield of 97% (w/w) and 100% (w/w) respectively. Further research focused on the feasibility of using CCC for the purification of EA from real Saccharopolyspora erythraea fermentation broths. Studies here examined the degree of pre-purification required prior to CCC separation. These used feeds consisting of either clarified broth or solvent extracts having undergone either forward or back extraction processes to determine the degree of impurity removal required to ensure a reproducible elution profile of EA. Further studies using a back extracted feed stream examined the effects of CCC mobile phase flow and solute loading on the attainable EA purity and yield. The results in all cases demonstrated a high attainable EA purity (>97% w/w). The results for both model and real systems were subsequently scaled-up using a novel, pilot scale CCC machine. From an understanding of the phase system hydrodynamics, a predictive scale-up model of the separation was established, to describe how solute fractionation at the pilot scale varied with changes in operating variables, such as feed type, mobile phase flow rate and solute loading. Linear scale-up was successfully demonstrated with both model and real erythromycin feed streams, based on the parameters taken from a single laboratory scale CCC chromatogram. Scale-up predictions were accurate to within 5-13% (model system) and 6-10% (real system) depending on the actual operating conditions. Finally, this research explored the successful application of 'Fractionation Diagram theory' as a graphical tool to allow quantification of the trade-off between product purity and solute yield in CCC separations. Combined with a new generation of robust industrial scale machines currently under construction, this work has demonstrated the potential of CCC as a generic and flexible high-resolution separation technique for the modern biotechnology industry.
机译:对现代生物技术产业的产品的监管限制要求最终剂型必须具有高且一致的纯度水平。同时,对工艺开发的财务限制要求找到具有成本效益的纯化方法。逆流色谱法(CCC)是一种液-液色谱技术,其中,溶质根据其在两个不混溶的液相之间的选择性分配进行分离。像常规HPLC中一样,不存在固相载体可克服不可逆吸附和孔扩散的问题,并确保CCC为低压操作。尽管已经建立了分析规模的技术,但由于缺乏通用且可靠的方法开发策略以及精心设计的工业规模机器,阻碍了CCC的广泛使用。该项目研究了新型J型CCC设备的操作和规模放大,以作为通用且可扩展的高分辨率纯化技术应用。从结构上类似的类似物中分离化学药物红霉素A(EA)用作测试系统,因为这提供了一个困难而现实的分离挑战。初步研究满足了提高CCC相速度的通用方法开发策略的需求系统选择和最佳运行模式识别。为了纯化EA,鉴定了由己烷/乙酸乙酯/甲醇/水组成的宽极性四元体系。简单平衡分配实验矩阵的结果用于确定首先用于梯度洗脱模式的合适溶剂系统。基于这些结果,然后选择了优化的反相等度分离,这使得能够从所有紧密相关的生物合成类似物中分离出EA。随后的优化研究使用模型红霉素混合物解决了实验室规模的J型CCC设备中溶质负载和流动相流速对EA纯度,色谱柱效率和通量的影响。在最佳条件下(8 mL.min-1; 0.6 g溶质负荷),可以达到0.097 kg.day-1的最大通量,EA纯度和产率分别为97%(w / w)和100%(w / w) w)分别。进一步的研究集中在使用CCC从真正的红多菌红细菌发酵液中纯化EA的可行性。此处的研究检查了CCC分离之前所需的预纯化程度。这些用过的饲料由经过正向或反向萃取过程的澄清的肉汤或溶剂萃取物组成,以确定确保EA洗脱曲线可再现所需的杂质去除程度。使用反萃取进料流进行的进一步研究检查了CCC流动相流量和溶质负载量对可达到的EA纯度和收率的影响。在所有情况下,结果均显示出较高的EA纯度(> 97%w / w)。随后,使用新型中试规模的CCC机器扩大了模型和实际系统的结果。通过了解相系统的流体动力学,建立了分离的预测放大模型,以描述中试规模的溶质分馏如何随操作变量(例如进料类型,流动相流速和溶质负载)的变化而变化。基于从单个实验室规模CCC色谱图中获取的参数,模型红霉素和实际红霉素进料流均成功地证明了线性放大。根据实际操作条件,按比例放大的预测精确到5-13%(模型系统)和6-10%(实际系统)。最后,本研究探索了“分馏图理论”作为图形工具的成功应用,以量化CCC分离中产品纯度和溶质收率之间的权衡。结合目前正在建设的新一代强大的工业规模机器,这项工作证明了CCC作为现代生物技术行业通用且灵活的高分辨率分离技术的潜力。

著录项

  • 作者

    Booth, Andrew Jason.;

  • 作者单位

    University of London, University College London (United Kingdom).;

  • 授予单位 University of London, University College London (United Kingdom).;
  • 学科 Biomedical engineering.;Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号