首页> 外文学位 >Advanced bulk nanocomposite materials for thermoelectric applications.
【24h】

Advanced bulk nanocomposite materials for thermoelectric applications.

机译:用于热电应用的先进的块状纳米复合材料。

获取原文
获取原文并翻译 | 示例

摘要

Thermoelectric materials have received rejuvenated interest for the past two decades due to the theoretical predictions that a high dimensionless thermoelectric figure of merit ZT > 1 can be obtained in materials with complex structures and reduced dimensions, termed "nanostructured materials". The underlying benefit of nanostructuring is the possibility of at least partially decoupling the interdependent relation between the Seebeck coefficient and electrical conductivity so that one has the flexibility to tune them individually. The thermal conductivity is expected to be reduced at the same time due to the phonon scattering from the nanoscopic interfaces.;In this work, we investigate the thermoelectric properties of bulk nanocomposite materials, which boast both ease of synthesis and enhanced thermoelectric performance originating from the reduced dimension. Two material systems are of our interest: bismuth telluride and p-type skutterudite.;For bismuth telluride and its alloys based nanocomposites, we select Bi2Te2.85Se0.15 as the n-type matrix and Bi0.4Sb1.6Te3 as the p-type matrix respectively. The nanocomposite materials were prepared by a solution based incipient wetness impregnation method. Adding PbTe nanoparticles can effectively reduce the lattice thermal conductivity at low temperature. But the doping effect from the excess Pb ion plays a dominant role compared to nanostructuring. This results in creating a two carrier system for the n-type nanocomposites, and decreased power factors for p-type nanocomposites.;For skutterudite based nanocomposites, we focus our attention on the under-developed p-type skutterudites. We start from the primitive Fe-doped binary skutterudite nanocomposite Co0.9Fe0.1Sb 3 with in-situ formed FeSb2 as nanoparticles and demonstrate 100% enhancement in the overall thermoelectric performance. The success encouraged us to re-develop an Yb-filled skutterudite as the matrix material and explore the thermoelectric properties over a wide range of Yb filling fraction with various amount of antimonide based impurities (presumably FeSb2). We achieve an enhanced thermoelectric performance up to 23% in optimized nanocomposites compared to the control sample.;Last but not least, we investigated the double filled p-type skutterudite Yb0.6GazFe2Co2Sb12. The unique role of Ga inducing a deep defect level in band structure enhances the Seebeck coefficient without affecting the electrical resistivity. The best performing sample demonstrates 46% enhancement of thermoelectric performance compared to Yb0.6Fe2Co2Sb12 with only Yb filler.;Overall, our study indicates that nanostructuring does provide significant benefits when applied to thermoelectrics under certain conditions. Time and more research will tell if this approach is ultimately a viable one.
机译:在过去的二十年中,由于理论上的预测,在具有复杂结构和减小尺寸的材料(称为“纳米结构材料”)中可以获得高无量纲的热电品质因数ZT> 1,热电材料引起了人们的兴趣。纳米结构的根本好处是可以使塞贝克系数和电导率之间的相互依赖关系至少部分解耦,从而使他们可以灵活地单独调整它们。由于声子从纳米界面的散射,预计导热系数会同时降低。缩小尺寸。我们感兴趣的是两种材料体系:碲化铋和p型方钴矿;对于碲化铋及其合金基纳米复合材料,我们选择Bi2Te2.85Se0.15作为n型基质,选择Bi0.4Sb1.6Te3作为p型。矩阵分别。通过基于溶液的初期湿润浸渍法制备纳米复合材料。添加PbTe纳米粒子可以有效降低低温下的晶格热导率。但是,与纳米结构相比,过量Pb离子的掺杂作用起主要作用。这导致为n型纳米复合材料创建两个载体系统,并为p型纳米复合材料降低了功率因数。对于基于方钴矿的纳米复合材料,我们将注意力集中在欠发达的p型方钴矿上。我们从原始的Fe掺杂二元方钴矿纳米复合材料Co0.9Fe0.1Sb 3与原位形成的FeSb2作为纳米颗粒开始,证明了整体热电性能提高了100%。这一成功促使我们重新开发了以Yb填充的方钴矿作为基质材料,并探索了在广泛的Yb填充级分中包含各种数量的基于锑的杂质(大概是FeSb2)的热电性能。与对照样品相比,我们在优化的纳米复合材料中实现了高达23%的增强的热电性能。最后但并非最不重要的是,我们研究了双填充的p型方钴矿Yb0.6GazFe2Co2Sb12。 Ga在能带结构中引起深缺陷水平的独特作用增强了塞贝克系数,而不影响电阻率。表现最佳的样品表明,与仅含Yb填料的Yb0.6Fe2Co2Sb12相比,热电性能提高了46%。总的来说,我们的研究表明,纳米结构在某些条件下应用于热电时确实具有明显的优势。时间和更多的研究将证明这种方法最终是否可行。

著录项

  • 作者

    Zhou, Chen.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Physical.;Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号