首页> 外文会议>Symposium on Materials and Technologies for Direct Thermal-to-Electric Energy Conversion >New Directions in Thermoelectric Materials Research: Synthesis of Nanoscale Precursors for 'Bulk-Composite' Thermoelectric Materials
【24h】

New Directions in Thermoelectric Materials Research: Synthesis of Nanoscale Precursors for 'Bulk-Composite' Thermoelectric Materials

机译:热电材料的新方向研究:“散装复合材料”热电材料的纳米级前体的合成

获取原文

摘要

Over a decade ago it was predicted that nano-scaled thermoelectric (TE) materials might have superior properties to that of their bulk counterparts. Subsequently, a significant increase in the figure of merit, ZT (ZT > 2), has been reported for nano-scaled systems such as superlattice and quantum dot systems constituently based on those more commonly used bulk TE materials (e.g., Bi_2Te_3 and PbTe). However, the challenge remains to achieve these higher performance results in bulk materials in order to more rapidly incorporate them into standard TE devices. Recent theoretical work on boundary scattering of phonons in amorphous materials indicates that micron and submicron grains could be very beneficial in order to lower the lattice thermal conductivity and yet not deteriorate the electron mobility. The focus in this paper will be to highlight some of our new directions in bulk thermoelectric materials research. Thermoelectric materials are inherently difficult to characterize and these difficulties are magnified at high temperatures. Specific materials will be discussed, especially those bulk materials that exhibit favorable properties for potential high temperature power generation capabilities. One potentially fruitful research direction is to explore whether hybrid TE materials possess possible enhanced TE properties. These "engineered" hybrids include materials that exhibit sizes from on the order of a few nanometers to hundreds of nanometers of the initial materials. These initial materials are then incorporated into a bulk structure. A discussion of some of the future research directions that we are pursuing is highlighted, including some bulk materials, which are based on nano-scaled or hybrid composites. The synthesis techniques and the synthesis results of many of these nano-scale precursor materials will be a primary focus of this paper.
机译:在十年前,预测纳米缩放的热电(TE)材料可能对其散装对应物的特性具有优异的特性。随后,已经向纳米缩放系统(例如,基于那些更常用的散装材料(例如,Bi_2te_3和PBTE)而构成的纳米缩放系统(例如,Bi_2te_3和PBTE)的纳米缩放系统(例如,ZT(ZT> 2)的纳米缩放系统(例如,Big,Bi_2te_3和PBTE)的纳米缩放系统(例如,Zt(Zt> 2)的显着增加。然而,挑战仍然达到这些更高的性能,以散装材料才能更快地将它们纳入标准的TE器件。最近无定形材料中子宫声子散射的理论工作表明,微米和亚微米颗粒可能是非常有利的,以降低晶格导热率,但不会劣化电子迁移率。本文的重点是突出我们在散装热电材料研究中的一些新方向。热电材料本质上难以表征,并且这些困难在高温下放大。将讨论具体材料,特别是那些表现出潜在的高温发电能力的有利性质的散装材料。一个潜在的富有成效的研究方向是探索混合动力TE材料是否具有可能的增强特性。这些“工程化”杂种包括展示从几纳米的大量到数百纳米初始材料的尺寸的材料。然后将这些初始材料掺入散装结构中。对我们正在追求的一些未来研究方向的讨论突出显示,包括一些基于纳米缩放或混合复合材料的散装材料。这些纳米级前体材料中许多的合成技术和合成结果将是本文的主要焦点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号