首页> 外文学位 >Quantum steganography and quantum error-correction.
【24h】

Quantum steganography and quantum error-correction.

机译:量子隐写术和量子误差校正。

获取原文
获取原文并翻译 | 示例

摘要

Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes.In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.
机译:十多年来,量子纠错码一直是量子信息科学(QIS)研究的基石。没有它们的概念,量子计算机将成为科学史上的脚注。当研究人员接受我们生活在一个嘈杂的环境的影响无法完全摆脱量子计算机运行的世界的想法时,自然的前进之路是考虑将经典的编码理论引入量子领域来诞生量子纠错码,可以帮助减轻退相干对量子数据的破坏作用。我们首先讨论六比特量子纠错码,并展示其与纠缠辅助纠错编码理论的联系,然后与子系统代码联系起来。该代码弥合了五位数(完美)和Steane代码之间的差距。我们讨论了两种将一个量子位编码为六个物理量子位的方法。两个示例中的每个示例都纠正了任意一个单量子位错误。第一个例子是简并六比特量子纠错码。我们为该代码明确提供了稳定器生成器,编码电路,代码字,逻辑保利运算符和逻辑CNOT运算符。我们还展示了如何将此代码转换为使子系统Singleton绑定饱和的非平凡子系统代码。然后,我们证明没有纠缠辅助功能的六量子位代码不能同时拥有Calderbank-Shor-Steane(CSS)稳定器并纠正任意单量子位错误。此结果的推论是,Steane七比特代码是最小的单错误纠正CSS代码。我们的第二个示例是构造一个非退化的六比特CSS纠缠辅助代码。此代码使用了发送者(Alice)和接收者(Bob)之间共享的纠缠位(一位),并纠正了任意一个单位错误。我们获得的代码在全球范围内等同于Steane七比特代码,因此也可以纠正接收器一半的比特误码。我们证明该代码是具有CSS结构的最小代码,该CSS结构仅使用一个ebit并在发送方纠正了任意一个单qubit错误。我们讨论了这两种密码的优缺点。在本文的后半部分,我们探索了量子隐写术领域中尚未发现和相对尚未发现的领域。隐秘术是通过将秘密信息嵌入“无害”消息中来隐藏它的过程。我们提出了用于在通过通道的量子纠错码的码字中隐藏量子信息的协议。使用共享的经典秘密密钥或共享的纠缠,爱丽丝将她的信息伪装成通道中的错误。 Bob可以检索隐藏的信息,但是具有监听频道功能但没有密钥的窃听者(Eve)无法将消息与频道噪音区分开。我们分析了夏娃检测秘密消息的存在有多困难,并估计了某些协议的隐写通信速率和秘密密钥消耗。我们还提供了一个示例,说明当Bob和她之间的基本通道是去极化通道时,Alice如何以完美的代码隐藏量子信息。使用这种方案,爱丽丝最多可以隐藏四个隐身量子比特。

著录项

  • 作者

    Shaw, Bilal A.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Physics Quantum.Computer Science.Information Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号