首页> 外文学位 >Label-free all-electronic biosensing in microfluidic systems.
【24h】

Label-free all-electronic biosensing in microfluidic systems.

机译:微流体系统中的无标签全电子生物传感。

获取原文
获取原文并翻译 | 示例

摘要

Label-free, all-electronic detection techniques offer great promise for advancements in medical and biological analysis. Electrical sensing can be used to measure both interfacial and bulk impedance changes in conducting solutions. Electronic sensors produced using standard microfabrication processes are easily integrated into microfluidic systems. Combined with the sensitivity of radiofrequency electrical measurements, this approach offers significant advantages over competing biological sensing methods. Scalable fabrication methods also provide a means of bypassing the prohibitive costs and infrastructure associated with current technologies. We describe the design, development and use of a radiofrequency reflectometer integrated into a microfluidic system towards the specific detection of biologically relevant materials. We developed a detection protocol based on impedimetric changes caused by the binding of antibody/antigen pairs to the sensing region. Here we report the surface chemistry that forms the necessary capture mechanism. Gold-thiol binding was utilized to create an ordered alkane monolayer on the sensor surface. Exposed functional groups target the N-terminus, affixing a protein to the monolayer. The general applicability of this method lends itself to a wide variety of proteins. To demonstrate specificity, commercially available mouse anti- Streptococcus Pneumoniae monoclonal antibody was used to target the full-length recombinant pneumococcal surface protein A, type 2 strain D39 expressed by Streptococcus Pneumoniae. We demonstrate the RF response of the sensor to both the presence of the surface decoration and bound SPn cells in a 1x phosphate buffered saline solution. The combined microfluidic sensor represents a powerful platform for the analysis and detection of cells and biomolecules.
机译:无标签的全电子检测技术为医学和生物学分析的发展提供了广阔的前景。电感应可用于测量导电溶液中的界面阻抗和体积阻抗变化。使用标准微细加工工艺生产的电子传感器可以轻松集成到微流体系统中。结合射频电测量的灵敏度,与竞争性生物传感方法相比,该方法具有明显的优势。可扩展的制造方法还提供了一种绕过与当前技术相关的过高成本和基础设施的方法。我们描述了集成到微流体系统中的射频反射仪的设计,开发和使用,以专门检测生物相关材料。我们基于由抗体/抗原对与感应区结合引起的阻抗变化,开发了一种检测方案。在这里,我们报告形成必要的捕获机制的表面化学。利用金-硫醇结合在传感器表面上形成有序的烷烃单层。暴露的官能团靶向N末端,将蛋白质固定在单层上。该方法的普遍适用性使其适用于多种蛋白质。为了证明特异性,使用市售的小鼠抗肺炎链球菌单克隆抗体靶向由肺炎链球菌表达的全长重组肺炎球菌表面蛋白A,2型菌株D39。我们展示了传感器对1x磷酸盐缓冲盐溶液中表面装饰和SPn细胞结合存在的RF响应。组合的微流体传感器代表了用于分析和检测细胞和生物分子的强大平台。

著录项

  • 作者

    Stanton, Michael A.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Physics General.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号