首页> 外文学位 >Annular pulley stress during digital flexion: A finite element analysis.
【24h】

Annular pulley stress during digital flexion: A finite element analysis.

机译:数字屈曲过程中的环形皮带轮应力:有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

For this investigation, a computer generated three-dimensional anatomical model of a human digit was developed and biomechanically analyzed using the finite element (FE) method. Borrowed from engineering sciences, the FE method utilizes mathematical solutions to estimate in-vivo biomechanical phenomena that are otherwise impossible to measure. While the present model is appropriate for estimating many biomechanical events, this study used it to simulate baseline stress distributions and strain energy changes in components of the flexor tendon sheath after simulating a muscle contraction force of 117 N (26 pounds) during digital flexion. These biomechanical conditions were then analyzed after single and combined excision of the A1, A2, A3, and A4 pulleys. After mathematical solution of the intact model, low restraining Von Mises stress was isolated primarily at the distal edges of both the A2 and A4 pulleys. For single pulley excisions, loss of the A2 pulley resulted in the greatest overall stress increase and caused the largest change in strain energy. Stress results of excising single pulleys A1, A3, and A4 were similar; however, excision of A4 alone caused large peak strain energy and displacement increases. Combined excision of annular pulleys A2 and A3 resulted in high stress and strain energy increases, but less than the triple excision of A1, A2, and A3. Of the double pulley excisions, loss of A1 and A3 combined (A2, A4 intact) had very little effect on stress and no effect on strain energy, but an increased proximal tendon displacement was noted. The three pulley system of A2, A3, and A4 reduced flexor tendon excursion needs when compared to the A2, A4 intact system. Of all pulley protocols, loss of A2 consistently increased residual stress and contact force redistribution when compared to the intact (control) system. We conclude that on the basis of stress redistribution, contact analysis, and strain energy, the A2 pulley is the most important for retaining the flexor tendons against bowstringing during digital flexion. Further, any combination of pulley loss that includes the A2 results in the greatest biomechanical change from the normal intact system.
机译:为了进行这项研究,开发了计算机生成的人体手指三维解剖模型,并使用有限元(FE)方法进行了生物力学分析。有限元方法是从工程科学中借来的,它利用数学解决方案来估算否则无法测量的体内生物力学现象。虽然本模型适用于估计许多生物力学事件,但本研究使用该模型模拟了数字屈伸过程中的117 N(26磅)的肌肉收缩力后,模拟了屈肌腱鞘组件的基线应力分布和应变能变化。这些生物力学条件然后在一次,两次切除A1,A2,A3和A4滑轮后进行分析。在对完整模型进行数学求解后,主要在A2和A4皮带轮的远端边缘处隔离了低约束Von Mises应力。对于单滑轮切除,A2滑轮的损失导致最大的整体应力增加,并引起最大的应变能变化。切下单个皮带轮A1,A3和A4的应力结果相似。但是,仅切除A4会导致较大的峰值应变能,并且位移增加。环形皮带轮A2和A3的联合切除导致较高的应力和应变能增加,但小于A1,A2和A3的三次切除。在双滑轮切除术中,A1和A3缺失(完整的A2,A4)对应力的影响很小,对应变能没有影响,但是注意到近端肌腱位移增加了。与A2,A4完整系统相比,A2,A3和A4的三滑轮系统减少了屈肌腱偏移需求。在所有滑轮方案中,与完整(控制)系统相比,A2的损失持续增加残余应力和接触力的重新分配。我们得出的结论是,基于应力的重新分布,接触分析和应变能,A2滑轮对于保持屈肌腱在数字屈伸过程中防止弓弦弯曲是最重要的。此外,皮带轮损失的任何组合(包括A2)都会导致与正常完整系统相比最大的生物力学变化。

著录项

  • 作者

    Coty, Mark Edward.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Health Sciences Medicine and Surgery.; Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.626
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号