首页> 外文学位 >A computational investigation of the conformational transitions in the catalytic cycle of SERCA.
【24h】

A computational investigation of the conformational transitions in the catalytic cycle of SERCA.

机译:SERCA催化循环中构象转变的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Ca-ATPase or SERCA is structurally and functionally the most well studied protein in the P-type ATPase family. X-ray structures of intermediate states and extensive mutational studies contribute to the information about this pump. In spite of the wealth of information, the dynamics of the pump moving from one state to another is not understood on a molecular level. Molecular dynamics (MD) simulations and dynamics importance sampling (DIMS) was used to explore conformational changes in the E2 -> E1 and the E1P -> E2P transitions. Our study is based on experiments showing a shift in kinetics with the insertions and deletions in the A-M3 linker region. To identify the underlying mechanism that drives these changes, the free energy changes and its components were studied. In order to estimate the free energy, enthalpic and entropic estimates were computed. The enthalpy-entropy compensation is found to be important for the E2 -> E1 transitions. The interactions of water with the A-M3 linker region is critical in that regard. Although the estimates of free energies use a coarse grained model, the trends seen among the mutants is in good correlation with the experimental results. In the second transition, the water interactions are significant for the E1P -> E2P large conformational change. Domain-water interactions compete with domain-domain interactions to alter the free energy changes during this transition in the mutations. Finally, the E2 -> E1 transition using the all-atom model reveals that making and breaking of three main inter-domain salt-bridges is central to the conformational transition. A comparison of the free energy changes in the all-atom transition show similar enthalpy-entropy compensations to that found in the coarse-grained study.
机译:Ca-ATPase或SERCA在结构和功能上是P型ATPase家族中研究最深入的蛋白质。中间状态的X射线结构和广泛的突变研究为有关该泵的信息做出了贡献。尽管有大量的信息,但在分子水平上仍无法理解泵从一种状态运动到另一种状态的动力学。分子动力学(MD)模拟和动力学重要性采样(DIMS)用于探索E2-> E1和E1P-> E2P过渡中的构象变化。我们的研究基于实验,结果表明动力学随A-M3接头区域的插入和缺失而变化。为了确定驱动这些变化的潜在机制,研究了自由能变化及其组成部分。为了估计自由能,计算了焓和熵的估计。发现焓熵补偿对于E2-> E1跃迁很重要。在这方面,水与A-M3接头区域的相互作用至关重要。尽管自由能的估计使用粗粒度模型,但在突变体中看到的趋势与实验结果高度相关。在第二个转变中,水的相互作用对于E1P-> E2P大构象变化很重要。域-水相互作用与域-域相互作用竞争以改变突变的这种转变过程中的自由能变化。最后,使用全原子模型进行的E2-> E1跃迁表明,三个主要的域间盐桥的形成和断裂对于构象跃迁至关重要。全原子跃迁中自由能变化的比较显示出与在粗粒度研究中发现的相似的焓-熵补偿。

著录项

  • 作者

    Nagarajan, Anu.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Chemistry Biochemistry.;Biophysics General.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号