首页> 外文学位 >Conformational transition of the catalytic domain of Src studied by computational approaches.
【24h】

Conformational transition of the catalytic domain of Src studied by computational approaches.

机译:通过计算方法研究了Src催化域的构象转变。

获取原文
获取原文并翻译 | 示例

摘要

The activity regulation of the Src family kinases (SFKs) involves a conformational transition of the catalytic domain between a canonical active structure and a less-common inactive structure. Computations with a coarse-grained Gō model that features two energy basins were used to study the conformational transition process. Free energy landscapes, calculated based on replica exchange molecular dynamics sampling, provided information about important structural coordinates. Based on the landscapes, the relative motion of the N- and C-terminal lobes and the conformational change of the C-terminal part of the activation loop (A-loop) are facile motions that do not correspond to the crossing of the major free energy barrier, whereas the displacement of the αC helix closely correlates with an energetic reaction coordinate. To investigate the sequence of events during the transition process, the maximum flux transition path (MFTP) method was used to locate optimal transition pathways between the active and inactive states. In a low-dimensional collective variable space, three different initial paths converged to a same final path. Going from the active to the inactive state in this optimized path, the A-loop folds into the catalytic cleft and presents its N-terminal segment in an inactive-like conformation before the αC helix moves outward. Examining the evolution of the path during the optimization revealed that such a sequence reduces the height of a major free energy barrier induced by the displacement of the αC helix. Similar results obtained for a remotely related kinase CDK2 confirmed that the highlighted role of the αC helix is a robust feature determined by the topology of the structures.
机译:Src家族激酶(SFK)的活性调节涉及规范活性结构和较少见的无活性结构之间催化结构域的构象转变。用粗粒度G&omacr计算;以具有两个能盆为特征的模型研究了构象转变过程。基于副本交换分子动力学采样计算的自由能态势提供了有关重要结构坐标的信息。根据景观,激活环(A环)的N端和C端波瓣的相对运动以及C端部分的构象变化是与主要自由峰的交叉不对应的灵活运动。能量屏障,而αC螺旋的位移与高能反应坐标密切相关。为了研究过渡过程中的事件顺序,使用最大通量过渡路径(MFTP)方法来确定活动状态和非活动状态之间的最佳过渡路径。在低维集合变量空间中,三个不同的初始路径会聚到相同的最终路径。在此优化路径中,从活动状态变为非活动状态,A环折叠成催化裂隙,并在αC螺旋向外移动之前呈非活动状构象显示其N末端片段。在优化过程中检查路径的演变过程表明,这样的序列降低了由αC螺旋位移引起的主要自由能垒的高度。从远程相关激酶CDK2获得的类似结果证实,αC螺旋的突出作用是由结构拓扑决定的强大功能。

著录项

  • 作者

    Huang, He.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Chemistry Biochemistry.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号