首页> 外文学位 >AFM-based microrheology of biological cells: Correlation of local viscoelasticity and motility.
【24h】

AFM-based microrheology of biological cells: Correlation of local viscoelasticity and motility.

机译:基于AFM的生物细胞微流变学:局部粘弹性和运动性的相关性。

获取原文
获取原文并翻译 | 示例

摘要

Local viscoelasticity of a cell is important in understanding the extension of the lamellipodium, which contributes to the cell's motility. It has been a challenge to accurately measure viscoelastic properties of a thin sample such as the lamellipodium of a cell (1000 nm) due to the strong substrate effects and high stresses (>1 kPa). We account for the substrate effects by applying the two advanced models—the Chen and Tu models. The tightly regulated elastic moduli shown in the lamellipodium of fibroblasts manifestly display the successful adoption of these two models. In addition, these models provide the local Poisson ratio and adhesive state of a cell: the regions near the lamellipodium are well adhered while the regions further back to the main body are non-adhered. Our AFM technique successfully illuminates the heterogeneous nature of the cytoskeleton over the entire regions of the cell. By extending these models to the frequency-dependent microrheology technique, we decompose the elastic moduli into the loss and the storage moduli. Our AFM microrheology technique distinctly differentiates the malignantly transformed fibroblasts from the normal fibroblasts: the malignantly transformed fibroblasts display a decrease in viscoelastic moduli of the lamellipodium. Considering that motilities as well as viscoelastic properties of cells are induced by cytoskeletal changes, we focus our attention to illuminating on the cell's protrusive mechanism correlated with the viscoelastic properties. To do this, we quantify the parameters of cell's motility by analyzing time-lapsed phase contrast images. The resulting data show an increase in the motile activity caused by malignant transformation. In conclusion, these results are combined to suggest the correlation between the enhanced motility and the decrease in viscoelastic moduli. This conclusion is successfully explained by considering the microscopic model of the cell motility, i.e. ‘Elastic Brownian Ratchet’ (Mogilner et al., 1996). It is understood that the lack of actin cross-linking proteins observed in malignantly transformed fibroblasts causes a cell to be softer and more motile. An increase in thermal fluctuations of softer cells can expedite the intercalation of G-actin that leads the cell's protrusive motility.
机译:细胞的局部粘弹性对于理解lamellipodium的延伸很重要,而lamellipodium的延伸有助于细胞的运动。由于强大的底物效应和高应力(> 1 kPa),精确测量薄样品(例如细胞的层状脂质体)的粘弹性质(<1000 nm)一直是一项挑战。我们通过应用两个高级模型Chen和Tu模型来说明底物效应。成纤维细胞的层状脂质体中显示的严格调节的弹性模量显然显示出这两种模型的成功采用。此外,这些模型还提供了细胞的局部泊松比和粘附状态:层状脂质体附近的区域粘附良好,而回到主体的区域则没有粘附。我们的原子力显微镜技术成功地阐明了细胞骨架在整个细胞区域的异质性。通过将这些模型扩展到频率相关的微流变技术,我们将弹性模量分解为损耗模量和储能模量。我们的AFM微流变技术将恶性转化的成纤维细胞与正常的成纤维细胞区分开来:恶性转化的成纤维细胞显示出lamellipodium的粘弹性模量降低。考虑到细胞的功能性以及粘弹性是由细胞骨架的变化诱导的,因此我们将注意力集中在阐明与粘弹性相关的细胞突出机制上。为此,我们通过分析延时的相位对比图像来量化细胞运动的参数。所得数据表明由恶性转化引起的活动能力增加。总之,这些结果相结合,表明运动性增强与粘弹性模量降低之间具有相关性。通过考虑细胞运动的微观模型即“弹性布朗棘齿”(Mogilner et al。,1996),可以成功地解释这一结论。可以理解,在恶性转化的成纤维细胞中观察到缺乏肌动蛋白交联蛋白,会导致细胞变得更柔软,更具运动性。较软细胞的热波动增加可以加快G-肌动蛋白的插入,从而导致细胞的突出运动。

著录项

  • 作者

    Park, Soyeun.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Biophysics General.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号