首页> 外文学位 >Adaptive control of human posture using reinforcement learning.
【24h】

Adaptive control of human posture using reinforcement learning.

机译:使用强化学习对人的姿势进行自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a design-driven thesis, aimed specifically at: (1) the adaptive control of the human musculo-skeletal system using reinforcement learning; and (2) a detailed study of reinforcement learning as a useful paradigm for use real-world complex control problems (by studying inverted pendulum systems as sub-problems of the human balance problem).; Established software engineering principles are used specifically to develop a Q learning based reinforcement controller, as well as various problem plants to control. These plants include double link pendulum systems, triple link pendulum systems, and a detailed bipedal human musculo-skeletal system. In order to address structural limitations of reinforcement learning, viz. the “curse of dimensionality” in which representational space requirements grow geometrically, a distributed architecture is proposed and used in the triple link and human model systems.; A single Q learning controller was able to learn to keep an inverted double link pendulum balanced for at least one hour within a day of computer time. The controller would apply a single point torque (from a small set of choices) to each joint. Based on subsequent experiments, a set of optimal parameter values for the pendulum control system was determined. These values were used to specify a single controller for a triple link inverted pendulum. The geometrically increased Q space size, however, predicted that such a controller would require at least a year of computer time to balance. Therefore, a novel architecture was proposed in which each link of the pendulum was controlled by its own Q learning controller. These reduced controllers received sensory information from a tuned subset of the original sensory space, as well as some globally shared sensory data. The distributed systems were able to learn to keep the inverted triple link system balanced for about half an hour after learning for about five days of computer time.; Given these results, this dissertation successfully demonstrates a design for human balance control using Q learning. Structural limitations of Q learning are addressed in the pendulum systems that are built as test-beds for the final human system. Although the final human controller was not able to remain upright for as long as the pendulum systems, rates of performance improvement, particularly when seen as function of underlying problem space size, improved in the human controller. (Abstract shortened by UMI.)
机译:这篇论文提出了一个以设计为驱动力的论文,专门针对:(1)使用强化学习对人肌肉骨骼系统的自适应控制; (2)对强化学习的详细研究,作为使用现实世界复杂控制问题的有用范例(通过研究倒立摆系统作为人类平衡问题的子问题);已建立的软件工程原理专门用于开发基于 Q 学习的加固控制器,以及各种要控制的问题工厂。这些植物包括双链摆系统,三链摆系统和详细的两足人类肌肉骨骼系统。为了解决强化学习的结构限制,即。在代表空间需求以几何形式增长的“维数诅咒”中,提出了一种分布式体系结构,并在三重链接和人体模型系统中使用;单个 Q 学习控制器能够学习在一天的计算机时间内保持反向双链接摆的平衡至少一小时。控制器将对每个关节施加单点扭矩(从少量选择中选择)。根据随后的实验,确定了摆控制系统的一组最佳参数值。这些值用于指定三链倒立摆的单个控制器。但是,几何上增加的 Q 空间大小预示着这种控制器将需要至少一年的计算机时间才能达到平衡。因此,提出了一种新颖的架构,其中摆的每个链接都由其自己的 Q 学习控制器控制。这些精简的控制器从原始感官空间的调整子集接收了感官信息,以及一些全局共享的感官数据。在学习了大约五天的计算机时间后,分布式系统能够学会保持反向三重链接系统平衡约半小时。鉴于这些结果,本论文成功地证明了使用 Q 学习进行人体平衡控制的设计。 Q 学习的结构限制在摆系统中得到解决,摆系统是最终人类系统的测试平台。尽管最终的人工控制器无法像摆锤系统那样保持直立状态,但人工控制器中的性能改善率(尤其是当被视为潜在问题空间大小的函数时)得到了改善。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号