首页> 外文学位 >From wavefunctions to chemical reactions: New mathematical tools for predicting the reactivity of atomic sites from quantum mechanics .
【24h】

From wavefunctions to chemical reactions: New mathematical tools for predicting the reactivity of atomic sites from quantum mechanics .

机译:从波函数到化学反应:从量子力学预测原子位反应性的新数学工具。

获取原文
获取原文并翻译 | 示例

摘要

Solving the electronic Schrodinger equation for the molecular wavefunction is the central problem in theoretical chemistry. From these wavefunctions (possibly with relativistic corrections), one may completely characterise the chemical reactivity and physical properties of atoms, molecules, and materials. Unfortunately, there are very few systematic approaches for obtaining highly-accurate molecular wavefunctions. The approaches that do exist suffer from the so-called curse of dimensionality: their computational cost grows exponentially as the number of particles increases. Furthermore, even after obtaining an accurate wavefunction, partitioning the molecule into atoms is not straightforward. This is because the kinetic energy operator is a differential operator in spatial coordinates. This is a source of ambiguity in the definition of an atom-in-a-molecule and the associated atomic properties. Even after selecting an appropriate definition of an atom and obtaining the atoms from the wavefunction, the atom's intrinsic reactivity cannot be completely characterised without considering every possible reaction partner. This is because each set of two molecules produces a new wavefunction that is more complicated than the products of the wavefunctions of the separate molecules.;Partitioning a molecule into atoms is not straightforward because of the inherent nonlocality of quantum mechanics. In the context of molecular electronic structure, this nonlocality arises from the nature of the kinetic energy operator. The quantum theory of atoms in molecules (QTAIM) is a popular method that partitions molecules into atoms. QTAIM resolves the problem of ambiguity for all permissible forms of the kinetic energy operator. In this thesis the characterisation of an atom provided by QTAIM is extended to include relativistic contributions in the zero-order regular approximation (ZORA). The intrinsic ambiguity arising from the kinetic energy operator is also examined in detail.;Computing atomic or molecular properties (including computing the general-purpose reactivity indicator) almost always requires a wavefunction. For this reason, obtaining accurate wavefunctions is the central hurdle of quantum chemistry. This thesis proposes algorithms for finding high-accuracy molecular wavefunctions without exponentially exploding computational cost. To do this, tools for exploiting the smoothness of electronic wavefunctions are crafted. Computational methods that use these tools can break the curse of exponential scaling without sacrificing accuracy. Specifically, the computation cost of these new methods grows only as some polynomial of the electron number. The wavefunctions obtained from these methods are much simpler than those from conventional approaches of similar accuracy, and are therefore ideal for computing the electron density and atomic properties.;This thesis presents methods for addressing the three challenges raised in the previous paragraph: computing atomic properties (e.g. chemical reactivity), partitioning molecules into atoms, and computing accurate molecular wavefunctions. The first challenge is addressed by developing a general-purpose reactivity indicator to quantify the reactivity of an atom within a molecule. This indicator quantifies the reactivity of any point of the molecule using only the electrostatic potential and Fukui potential at that point. The key idea is to include only a vague description of an incoming molecule and compute an approximate interaction with the incoming object; this ensures that the general-purpose reactivity indicator is simple enough to be useful. Practically, this indicator is most useful when it is used to compute the reactivity of the atomic sites in the molecule of interest.
机译:解决分子波函数的电子薛定inger方程是理论化学中的中心问题。从这些波函数(可能经过相对论校正),可以完全表征原子,分子和材料的化学反应性和物理性质。不幸的是,很少有系统的方法来获得高精度的分子波函数。确实存在的方法遭受所谓的维数诅咒:它们的计算成本随着粒子数量的增加而呈指数增长。此外,即使获得了精确的波函数,将分子划分为原子也不是一件容易的事。这是因为动能算子在空间坐标上是微分算子。这是一个分子中原子的定义和相关原子性质的歧义。即使在选择了合适的原子定义并从波函数获得原子后,如果不考虑所有可能的反应伙伴,就无法完全表征原子的固有反应性。这是因为两个分子的每个集合产生的新波函数比单独分子的波函数的乘积还要复杂。由于量子力学固有的非局限性,将分子划分为原子并不容易。在分子电子结构的背景下,这种非局部性是由动能算子的性质引起的。分子中原子的量子理论(QTAIM)是一种将分子划分为原子的流行方法。 QTAIM解决了所有允许形式的动能算子的歧义问题。在本文中,QTAIM提供的原子的表征被扩展为在零级正则逼近(ZORA)中包括相对论贡献。还详细检查了由动能算符引起的固有模糊性。计算原子或分子特性(包括计算通用反应性指示剂)几乎总是需要波函数。因此,获得准确的波函数是量子化学的主要障碍。本文提出了在不使计算成本呈指数级增长的情况下寻找高精度分子波函数的算法。为此,设计了利用电子波函数的平滑度的工具。使用这些工具的计算方法可以在不牺牲准确性的情况下打破指数缩放的诅咒。具体而言,这些新方法的计算成本仅随着电子数的多项式而增加。通过这些方法获得的波函数比从具有类似精度的传统方法获得的波函数要简单得多,因此非常适合计算电子密度和原子性质。;本文提出了解决上一段中提出的三个挑战的方法:计算原子性质(例如化学反应性),将分子划分为原子并计算准确的分子波函数。通过开发通用反应性指示剂来量化分子内原子的反应性来解决第一个挑战。该指示剂仅使用该点的静电势和福井势来量化分子任何一点的反应性。关键思想是仅包含对传入分子的模糊描述,并计算与传入对象的近似相互作用;这确保了通用反应性指示器足够简单到有用。实际上,该指标在用于计算目标分子中原子位点的反应性时最有用。

著录项

  • 作者

    Anderson, James S. M.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Applied Mathematics.;Physics Quantum.;Chemistry Molecular.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 271 p.
  • 总页数 271
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号