首页> 外文学位 >A strain map of the human distal tibia during the stance phase of walking, from dynamic cadaver experiments and finite element analysis simulations.
【24h】

A strain map of the human distal tibia during the stance phase of walking, from dynamic cadaver experiments and finite element analysis simulations.

机译:来自动态尸体实验和有限元分析模拟的行走姿态阶段人体胫骨远端的应变图。

获取原文
获取原文并翻译 | 示例

摘要

Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al. 1996) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation, yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R 2 > 0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.
机译:长时间暴露于微重力下会导致大量的骨质流失(Leblanc等,1996),因此人们提倡在重力替代负荷(GRLs)下进行跑步机锻炼作为对策。迄今为止,用于太空运动的GRL的幅度已经大大小于施加于地面的1G环境中的负载,这可能是作为干预措施的运动表现较差的原因。未来跑步机干预的成功可能需要更大的GRL。普遍认为,机械组织应变是将外部负荷环境与骨骼维持和功能适应联系起来的转导途径中的重要中介信号,然而,据我们所知,尚无数据将外部骨骼负荷的变化与骨骼应变的变化联系起来。在这项初步研究中,我们使用微重力运动的独特尸体模拟来确定胫骨局部骨张力与外部负重之间的关系,以此作为更好地预测未来运动干预以维持眼眶骨的功效的手段。发现胫骨远端的骨应变大小与地面反作用力大小​​呈线性关系(R 2> 0.7)。应变分布表明,胫骨负荷的主要模式是弯曲,在步态站立阶段中性轴几乎没有变化。对最大的应变以及对外部载荷变化的最大应变敏感性,发生在胫骨的前顶和后侧,即距弯曲中性轴最远的位置。我们建立了一种从外部载荷估算局部应变大小的技术,并提出了在模拟微重力行走过程中预测应变的方程式。

著录项

  • 作者

    Peterman, Marc McMeen.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Biomedical.;Health Sciences Recreation.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号