首页> 外文学位 >Mechanisms of Mitotic Spindle Disassembly and Positioning in Saccharomyces cerevisiae.
【24h】

Mechanisms of Mitotic Spindle Disassembly and Positioning in Saccharomyces cerevisiae.

机译:酿酒酵母中有丝分裂纺锤体分解和定位的机制。

获取原文
获取原文并翻译 | 示例

摘要

When a cell divides, it must accurately replicate its genetic material and then faithfully segregate this material into the resulting daughter cells. My research addresses the latter half of this problem, focusing on how the cell regulates the function of the mitotic spindle, an elegant microtubule-based machine that attaches to replicated DNA and pulls it apart during mitosis. Here, I present two studies that investigate how the cell disassembles the mitotic spindle at the end of mitosis and how the cell positions the mitotic spindle prior to mitotic completion.;I combined genetic analysis with live-cell fluorescence microscopy to identify the subprocesses driving spindle disassembly as well as the proteins that perform these subprocesses. Our results suggest that mechanistically distinct pathways largely governed by the anaphase-promoting complex, Aurora B kinase, and kinesin-8 cooperate to drive spindle disassembly in budding yeast. We also describe the roles of novel disassembly factors such as the spindle protein She1 and the 7-protein Alternative Replication Factor C complex. Together, these pathways disengage the mitotic spindle halves, inhibit spindle microtubule growth, and promote sustained spindle microtubule depolymerization. Strikingly, combined inhibition of pairs of disassembly pathways yielded cells with hyper-stable spindle remnants, which caused dramatic defects in cell cycle progression, thus establishing that regulated and rapid spindle disassembly is crucial for cell proliferation.;To better understand the mechanisms of spindle positioning, I examined how the dynein-driven spindle-positioning pathway in budding yeast is silenced. My work suggests that dynein activity is regulated through interaction with the multi-subunit dynactin complex at anaphase and identifies a new cellular factor, She1, which controls this interaction. Dynactin is a well-known dynein activator, and, in budding yeast, the complete complex is required for dynein-dependent spindle movement. I found that localization of the dynactin complex is cell cycle-regulated, such that dynactin is recruited to astral microtubules, via interaction with dynein, primarily during anaphase. Additionally, we discovered that the protein She1 is a cell cycle-regulated inhibitor of dynein activity. Without She1, dynein activity extends beyond anaphase and, as a result, mis-positions the mitotic spindle. Strikingly, loss of She1 also permits recruitment of the dynactin complex to astral microtubules throughout the cell cycle. These results suggest that in wild-type cells, She1 restricts dynein activity to anaphase by preventing the interaction between dynein and the complete dynactin complex.
机译:当细胞分裂时,它必须准确地复制其遗传物质,然后如实地将其分离成子细胞。我的研究解决了该问题的后半部分,重点是细胞如何调节有丝分裂纺锤体的功能,这是一种优雅的基于微管的机器,可附着在复制的DNA上,并在有丝分裂期间将其拉开。在这里,我进行了两项研究,研究细胞如何在有丝分裂结束时分解有丝分裂纺锤体,以及细胞在有丝分裂完成之前如何定位有丝分裂纺锤体。我将遗传分析与活细胞荧光显微镜相结合,以确定驱动纺锤体的子过程拆卸以及执行这些子过程的蛋白质。我们的结果表明,在机理上截然不同的途径主要由后期促进复合物,Aurora B激酶和kinesin-8共同控制,以驱动发芽酵母中的纺锤体分解。我们还描述了新颖的分解因子,如纺锤体蛋白She1和7蛋白替代复制因子C复合体的作用。这些途径一起使有丝分裂纺锤半体脱离接合,抑制纺锤体微管生长,并促进持续的纺锤体微管解聚。令人惊讶的是,对分解途径对的联合抑制产生了具有高稳定性纺锤体残留物的细胞,这在细胞周期进程中造成了严重的缺陷,从而确定了调节和快速的纺锤体分解对于细胞增殖至关重要。 ,我研究了发芽酵母中由达因宁驱动的纺锤体定位途径是如何沉默的。我的工作表明,动力蛋白的活性是在后期通过与多亚基动力蛋白复合物的相互作用来调节的,并确定了一个新的细胞因子She1,它控制着这种相互作用。动力蛋白是众所周知的动力蛋白激活剂,在发芽的酵母中,动力蛋白依赖的纺锤体运动需要完整的复合物。我发现,动力蛋白复合物的定位受细胞周期调节,从而动力蛋白主要通过后期与动力蛋白的相互作用而被募集到星状微管中。此外,我们发现蛋白She1是细胞周期调节的动力蛋白抑制剂。如果没有She1,则动力蛋白的活性会超出后期,因此,有丝分裂纺锤体的位置会发生错误。令人惊讶的是,She1的缺失还允许在整个细胞周期中将强肌动蛋白复合物募集到星形微管中。这些结果表明,在野生型细胞中,She1通过阻止动力蛋白与完整动力蛋白复合物之间的相互作用,将动力蛋白的活性限制在后期。

著录项

  • 作者

    Woodruff, Jeffrey Blake.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Cell.;Health Sciences Human Development.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号