首页> 外文学位 >Plasmonic properties of metallic nanostructures with reduced symmetry.
【24h】

Plasmonic properties of metallic nanostructures with reduced symmetry.

机译:具有减小的对称性的金属纳米结构的等离子特性。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we theoretically study the plasmonic properties of metallic nanostructures with reduced symmetry using the Plasmon Hybridization (PH) and the Finite Difference Time Domain (FDTD) methods. Both methods provide efficient and accurate results for calculating physical properties of metallic nanostructures, including the optical cross section spectra, the local electromagnetic fields and induced charge densities around the surface of the nanostructures.;The PH method is applied to a nanoshell with an offset core (nanoegg). The results show that the reduction in symmetry relaxes the selection rules in the hybridization of primitive plasmon modes, allowing for an admixture of dipolar components in higher multipolar plasmon modes of the particle. The hybridization therefore makes higher multipolar nanoshell plasmon modes dipole active, resulting in a core offset-dependent shift for the plasmon energies and a multipeaked feature in the optical spectrum. The polarization dependence of the optical absorption spectra is found to be relatively weak. The calculations also show significantly larger local-field enhancements on nanoegg's external surface than the equivalent concentric spherical nanostructure. The results agree very well with results from FDTD simulations and experiments, suggesting applications of nanoeggs as substrates for surface enhanced Raman spectroscopy (SERS);Another comprehensive investigation of the plasmonic interactions of individual metallic nanoshells with dielectric substrates is performed using the FDTD method. The results show that the adjacent dielectric breaks the spherical symmetry of individual nanoshell and lifts the degeneracy of the dipole and quadrupole plasmon modes, introducing significant polarization dependent redshifts and hybridization of the nanoparticle plasmon resonances. The results also show that, for small nanoparticle-substrate separations and substrates with large dielectric permittivities, the hybridized quadrupolar nanoparticle plasmon resonances also appear in the scattering spectrum. We discuss different numerical approaches in FDTD simulations for calculating the scattering spectrum in typical dark-field scattering geometries. We also discuss issues of numerical convergence and show that the scattering spectra can be calculated using finite substrate slab models. The results agree very well with experiments, showing that dielectric substrates matter in optical measurements of plasmonic nanoparticles.;FDTD method is also applied to a bowtie-shaped nanostructure (nanobowtie). The calculations show significantly large SERS enhancements across a broad bandwidth of exciting wavelengths because of the complicated mode structure possible in the interelectrode gap. Nanometer-scale asperities in the gap area break the inter-electrode symmetry of the structure, resulting in optical excitations of many inter-electrode modes besides the simple dipolar plasmon mode commonly considered. The broken symmetry also leads to much less dependence of the calculated enhancement on polarization direction, as seen experimentally. The calculations confirm that the electromagnetic enhancement is confined in the normal direction to the film thickness and to a region comparable to the radius of curvature of the asperity. The calculated electromagnetic enhancements can exceed 1011, approaching that sufficient for single-molecule sinsitivity. We also compare the calculated extinction spectra for various values of interelectrode conductance connecting the source and drain. The results show that negligible charge transfer occurs between the two electrodes until junction conductance approaches the conductance quantum, G 0 = 2e2/h.
机译:在本文中,我们使用等离子杂交(PH)和时域有限差分(FDTD)方法从理论上研究了对称性降低的金属纳米结构的等离激元性质。两种方法都可提供有效而准确的结果来计算金属纳米结构的物理性质,包括光学截面光谱,局部电磁场和纳米结构表面周围的感应电荷密度。; PH方法应用于具有偏移核的纳米壳(nanoegg)。结果表明,对称性的降低放宽了原始等离振子模式杂交中的选择规则,从而允许粒子的更高多极等离激元模式中的偶极成分混合在一起。因此,杂交使更高的多极纳米壳等离激元模态具有偶极活性,从而导致了等离激元能量的核偏移相关位移和光谱中的多峰特征。发现光吸收光谱的偏振依赖性相对较弱。计算还显示,与等效的同心球形纳米结构相比,纳米蛋的外表面上的局部场增强明显更大。结果与FDTD模拟和实验的结果非常吻合,表明纳米蛋作为表面增强拉曼光谱(SERS)的基质的应用;使用FDTD方法对单个金属纳米壳与介电基质的等离子体相互作用进行了另一项综合研究。结果表明,相邻的电介质破坏了单个纳米壳的球形对称性,并提升了偶极和四极等离子体激元模的简并性,引入了明显的极化相关红移和纳米粒子等离子体激元共振的杂交。结果还表明,对于小的纳米颗粒-基质分离和具有大介电常数的基质,杂化的四极纳米颗粒等离子体激元共振也出现在散射光谱中。我们在FDTD模拟中讨论了不同的数值方法,用于计算典型暗场散射几何形状中的散射谱。我们还讨论了数值收敛问题,并表明可以使用有限的基板平板模型来计算散射光谱。结果与实验非常吻合,表明电介质基质对等离子体纳米颗粒的光学测量很重要。FDTD方法也适用于领结形纳米结构(nanobowtie)。由于电极间间隙中可能存在复杂的模式结构,因此计算结果表明,在激发波长的较宽带宽上,SERS增强显着。间隙区域中的纳米级凹凸破坏了结构的电极间对称性,除了通常考虑的简单偶极等离子体激元模式以外,还导致许多电极间模式的光激发。如实验所见,破坏的对称性还导致所计算的增强对偏振方向的依赖性降低。该计算证实电磁增强在法线方向上被限制在膜厚度以及与粗糙的曲率半径相当的区域内。计算得出的电磁增强可能超过1011,接近单分子正弦波的足够强度。我们还比较了连接源极和漏极的各种极间电导值的计算消光光谱。结果表明,在两个电极之间发生微不足道的电荷转移,直到结电导接近电导量子,G 0 = 2e2 / h。

著录项

  • 作者

    Wu, Yanpeng.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Physics Electricity and Magnetism.;Physics Condensed Matter.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号