首页> 外文学位 >Fabrication and study of molecular devices and photovoltaic devices by metal/dielectric/metal structures.
【24h】

Fabrication and study of molecular devices and photovoltaic devices by metal/dielectric/metal structures.

机译:通过金属/介电/金属结构制造和研究分子器件和光伏器件。

获取原文
获取原文并翻译 | 示例

摘要

A new class of electrodes with nanometer-scale contact spacing can be produced at the edge of patterned metal/insulator/metal this film structures. A key challenge is to produce insulator layers with low leakage current and have pristine metal contacts for controlled molecular contacts. Atomic layer deposition of high quality Al2O3 thin films onto Au electrodes was enabled by surface modification with a self-assembled monolayer of -OH groups that react with a monolayer of trimethylaluminum gas source. Ar ion milling was then used to expose the edge of the Au/dielectric/Au structure for molecular electrode contacts. The junctions are characterized by atomic force microscope and tunnel current properties. The Au/self-assembled monolayer/Al 2O3/Au tunnel junction, with a very thin oxide insulator layer (15.4 A), is stable and has a small tunneling current density of about 0.20 ∼ 0.75 A/cm2 at 0.5 V. Organometalic cluster molecules were attached to bridge the electrodes. Through tunnel current modeling, low temperature and photo current measurements, molecular current was found to be consistent with direct tunneling through the organic tethers to available states at the metal center.;This novel electrode was also used to study the efficiency of organic conducting thin films where the photovoltaic efficiency can be improved when the electrode separation distance is below the exciton diffusion length. Copper (II) phthalocyanine (CuPc) was thermally evaporated between the nano-gap electrodes formed by Au/Al2O3/Au tunnel junctions. A large photocurrent enhancement over 50 times that of bulk CuPc film was observed when the electrode gap distance approached 10 nm. CuPc diffusion length is seen to be 10 nm consistent with literature reports. All devices show diode I-V properties due to a large Schottky barrier contact resistance between the small top Au electrode and the CuPc film.;To add another dimension of nm-scale patterning, nanowires can be used as line-of-sight shadowmasks provided that nanowire location and diameter can be controlled. Lateral ZnO nanowires were selectively grown from the edge of a Si/Al2O3/Si multi-layer structure for potential integration into devices utilizing Si processing technology. Microstructural studies demonstrate a 2-step growth process in which the tip region, with a diameter ∼ 10 nm, rapidly grew from the Al2O3 surface. Later a base growth with a diameter ∼ 22 nm overgrew the existing narrow ZnO nanowire halting further tip growth. Kinetics studies showed surface diffusion on the alumina seed surface determined ZnO nanowire growth rate.;KEYWORDS: Molecular Devices, Tunnel Junctions, Photovoltaic Devices, Organic Semiconductor, Oxide Nanowires.
机译:新型的具有纳米级接触间距的电极可以在图案化金属/绝缘体/这种膜结构的金属的边缘产生。关键的挑战是生产具有低泄漏电流的绝缘层,并具有用于控制分子接触的原始金属接触。通过用-OH基团的自组装单层与三甲基铝气源的单层反应的表面改性,可以在Au电极上沉积高质量的Al2O3薄膜。然后,使用Ar离子铣削来暴露Au /电介质/ Au结构的边缘,以用于分子电极接触。结的特征在于原子力显微镜和隧道电流特性。具有非常薄的氧化物绝缘层(15.4 A)的Au /自组装单层/ Al 2O3 / Au隧道结稳定且在0.5 V时隧道电流密度较小,约为0.20〜0.75 A / cm2。有机金属簇分子被附着以桥接电极。通过隧道电流建模,低温和光电流测量,发现分子电流与通过有机系链直接隧穿到金属中心的可用状态相符;该新型电极还用于研究有机导电薄膜的效率当电极间距小于激子扩散长度时,可以提高光伏效率。铜(II)酞菁(CuPc)在由Au / Al2O3 / Au隧道结形成的纳米间隙电极之间热蒸发。当电极间隙距离接近10 nm时,观察到的光电流增强能力是CuPc薄膜的50倍。与文献报道一致,发现CuPc扩散长度为10 nm。由于小顶部Au电极和CuPc膜之间的肖特基势垒接触电阻大,所有器件都显示出二极管IV特性。位置和直径可以控制。从Si / Al2O3 / Si多层结构的边缘选择性生长横向ZnO纳米线,以便潜在地集成到利用Si处理技术的器件中。微观结构研究显示了一个两步生长过程,其中直径约10 nm的尖端区域从Al2O3表面快速生长。后来直径约22 nm的基础生长覆盖了现有的窄ZnO纳米线,从而阻止了进一步的尖端生长。动力学研究表明,氧化铝种子表面上的表面扩散决定了ZnO纳米线的生长速率。关键词:分子器件,隧道结,光伏器件,有机半导体,氧化物纳米线。

著录项

  • 作者

    Hu, Bing.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Materials Science.;Engineering Electronics and Electrical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号