首页> 外文学位 >Multi-ligand nanoparticles for targeted drug delivery to the injured vascular wall.
【24h】

Multi-ligand nanoparticles for targeted drug delivery to the injured vascular wall.

机译:多配体纳米颗粒,用于靶向药物输送至受伤的血管壁。

获取原文
获取原文并翻译 | 示例

摘要

Pathological conditions like coronary artery disease, acute myocardial infarction, stroke, and peripheral artery diseases as well as cardiovascular interventions used in the treatment of coronary artery diseases such as angioplasty and stenting damage/injure the blood vessel wall, leading to inflamed or activated endothelial cells that have been implicated in events leading to thrombosis, inflammation, and restenosis. Oral administration of anti-coagulant and anti-inflammatory drugs causes systemic toxicity, bleeding, patient incompliance, and inadequate amounts of drugs at the injured area. Though drug-eluting stents have shown therapeutic benefits, complications such as in-stent restenosis and late thrombosis still remain and are a cause for concern. Rapid growth in the field of nanotechnology and nanoscience in recent years has paved the way for new targeted and controlled drug delivery strategies. In this perspective, the development of biodegradable nanoparticles for targeted intracellular drug delivery to the inflamed endothelial cells may offer an improved avenue for treatment of cardiovascular diseases.;The major objective of this research was to develop "novel multi-ligand nanoparticles," as drug carriers that can efficiently target and deliver therapeutic agents to the injured/inflamed vascular cells under dynamic flow conditions. Our approach mimics the natural binding ability of platelets to injured/activated endothelial cells through glycoprotein Ib (GPIb) bound to P-selectin expressed on inflamed endothelial cells and to the subendothelium through GPIb binding to von Willebrand factor (vWF) deposited onto the injured vascular wall. Our design also exploits the natural cell membrane translocation ability of the internalizing cell peptide - trans-activating transcriptor (TAT) to enhance the nanoparticle uptake by the targeted cells. Our hypothesis is that these multi-ligand nanoparticles would show an increased accumulation at the injury site since GPIb specially binds to both P-selectin expressed on damaged endothelial cells and vWF deposited on injured subendothelium while the cell penetrating peptide -- TAT would facilitate enhanced uptake of these nanoparticles by the damaged vascular cells.;To test this hypothesis, fluorescent drug loaded poly (D, L-lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanoparticles (PLGA-PEG NPs) were formulated using a standard double emulsion method. We further conjugated GPIb and TAT via carbodiimide and avidin-biotin chemistry to the PLGA-PEG nanoparticles. Characterization of these nanoparticles indicated the average size to be about 200nm. Endothelial cell uptake studies indicated an optimal nanoparticle incubation time of one hour and optimal dose of 400 mug/ml. Biocompatibility results showed these particles to be non-toxic to endothelial cells. Moreover, dexamethasone release profiles from the nanoparticles demonstrated their ability to provide a sustained drug release over four weeks. Static and dynamic uptake studies of control, GPIb-conjugated, and GPIb-TAT-conjugated PLGA-PEG nanoparticles on activated endothelial cells exhibited an increased adhesion and uptake of GPIb-TAT conjugated PLGA-PEG nanoparticles compared to control nanoparticles. A similar trend of significantly higher adhesion of GPIb-TAT conjugated PLGA-PEG nanoparticles to the injured vessel wall was also observed in preliminary ex-vivo studies using the rat carotid injury model. These results suggest that "our novel multi-ligand NPs" would provide a unique active targeting strategy. This system would rapidly target and deliver therapeutic agents to the injured vascular wall under flow conditions. It could also serve as an effective therapeutic delivery system to treat the complications associated with cardiovascular diseases.
机译:诸如冠状动脉疾病,急性心肌梗塞,中风和外周动脉疾病等病理状况,以及用于治疗冠状动脉疾病(例如血管成形术和支架置入术)的心血管干预措施会损伤/伤害血管壁,从而导致炎症或激活的内皮细胞与导致血栓形成,发炎和再狭窄的事件有关。口服抗凝药和抗炎药会导致全身毒性,出血,患者不依从以及受伤部位药物用量不足。尽管药物洗脱支架已显示出治疗效果,但仍然存在支架内再狭窄和晚期血栓形成等并发症,值得关注。近年来,纳米技术和纳米科学领域的快速发展为新的靶向和受控药物递送策略铺平了道路。从这个角度出发,开发可生物降解的纳米颗粒用于将细胞内药物靶向递送至发炎的内皮细胞可能为心血管疾病的治疗提供一条改善的途径。这项研究的主要目标是开发“新型多配体纳米颗粒”药物在动态流动条件下可有效靶向治疗剂并将其递送至受伤/发炎的血管细胞的载体。我们的方法通过与糖蛋白Ib(GPIb)结合到发炎的内皮细胞上表达的P-选择素,并通过GPIb与沉积在受伤血管上的von Willebrand因子(vWF)结合的糖蛋白Ib(GPIb)来模拟血小板与受伤/激活的内皮细胞的天然结合能力。壁。我们的设计还利用了内在化细胞肽的自然细胞膜易位能力-反式激活转录子(TAT)来增强目标细胞对纳米颗粒的吸收。我们的假设是这些多配体纳米颗粒会在损伤部位显示出增加的积累,因为GPIb专门与受损内皮细胞上表达的P-选择素和受损血管内皮下沉积的vWF结合,而细胞穿透肽-TAT则有助于增强摄取为了验证该假设,使用以下方法配制了荧光染料负载的聚(D,L-乳酸-乙醇酸共聚物)(PLGA)-聚乙二醇(PEG)纳米颗粒(PLGA-PEG NPs)标准的双重乳液法。我们进一步通过碳二亚胺和抗生物素蛋白-生物素化学将GPIb和TAT偶联到PLGA-PEG纳米颗粒上。这些纳米颗粒的表征表明平均尺寸为约200nm。内皮细胞摄取研究表明最佳的纳米颗粒孵育时间为一小时,最佳剂量为400杯/毫升。生物相容性结果显示这些颗粒对内皮细胞无毒。此外,地塞米松从纳米颗粒的释放曲线证明了它们能够在四个星期内持续释放药物。与活化的内皮细胞相比,对照,GPIb偶联和GPIb-TAT偶联的PLGA-PEG纳米颗粒的静态和动态摄取研究显示,与对照纳米颗粒相比,GPIb-TAT偶联的PLGA-PEG纳米颗粒具有增加的粘附性和摄取。在使用大鼠颈动脉损伤模型的初步离体研究中,也观察到了GPIb-TAT偶联的PLGA-PEG纳米颗粒与受损血管壁的粘附力明显升高的类似趋势。这些结果表明“我们新颖的多配体NP”将提供独特的主动靶向策略。该系统将在流动条件下快速靶向并将治疗剂递送至受伤的血管壁。它也可以用作治疗与心血管疾病相关的并发症的有效治疗系统。

著录项

  • 作者

    Kona, Soujanya.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Biomedical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号