首页> 外文学位 >Turbulent Transport In Global Models of Magnetized Accretion Disks.
【24h】

Turbulent Transport In Global Models of Magnetized Accretion Disks.

机译:磁化吸积盘的全局模型中的湍流传输。

获取原文
获取原文并翻译 | 示例

摘要

The modern theory of accretion disks is dominated by the discovery of the magnetorotational instability (MRI). While hydrodynamic disks satisfy Rayleigh's criterion and there exists no known unambiguous route to turbulence in such disks, a weakly magnetized disk of plasma is subject to the MRI and will become turbulent. This MRI-driven magnetohydrodnamic turbulence generates a strong anisotropic correlation between the radial and azimuthal magnetic fields which drives angular momentum outwards. Accretion disks perform two vital functions in various astrophysical systems: an intermediate step in the gravitational collapse of a rotating gas, where the disk transfers angular momentum outwards and allows material to fall inwards; and as a power source, where the gravitational potential energy of infalling matter can be converted to luminosity. Accretion disks are important in astrophysical processes at all scales in the universe. Studying accretion from first principles is difficult, as analytic treatments of turbulent systems have proven quite limited. As such, computer simulations are at the forefront of studying systems this far into the non-linear regime.;While computational work is necessary to study accretion disks, it is no panacea. Fully three-dimensional simulations of turbulent astrophysical systems require an enormous amount of computational power that is inaccessible even to sophisticated modern supercomputers. These limitations have necessitated the use of local models, in which a small spatial region of the full disk is simulated, and constrain numerical resolution to what is feasible. These compromises, while necessary, have the potential to introduce numerical artifacts in the resulting simulations. Understanding how to disentangle these artifacts from genuine physical phenomena and to minimize their effect is vital to constructing simulations that can make reliable astrophysical predictions and is the primary concern of the work presented here.;The use of local models is predicated on the assumption that these models accurately capture the dynamics of a small patch of a global astrophysical disk. This assumption is tested in detail through the study of local regions of global simulations. To reach resolutions comparable to those used in local simulations an orbital advection algorithm, a semi-Lagrangian reformulation of the fluid equations, is used which allows an order of magnitude increase in computational efficiency. It is found that the turbulence in global simulations agrees at intermediate- and small-scales with local models and that the presence of magnetic flux stimulates angular momentum transport in global simulations in a similar manner to that observed for local ones. However, the importance of this flux-stress connection is shown to cast doubt on the validity of local models due to their inability to accurately capture the temporal evolution of the magnetic flux seen in global simulations.;The use of orbital advection allows the ability to probe previously-inaccessible resolutions in global simulations and is the basis for a rigorous resolution study presented here. Included are the results of a study utilizing a series of global simulations of varying resolutions and initial magnetic field topologies where a collection of proposed metrics of numerical convergence are explored. The resolution constraints necessary to establish numerical convergence of astrophysically-important measurements are presented along with evidence suggesting that the use of proper azimuthal resolution, while computationally-demanding, is vital to achieving convergence. The majority of the proposed metrics are found to be useful diagnostics of MRI-driven turbulence, however they suffer as metrics of convergence due to their dependence on the initial magnetic field topology. In contrast to this, the magnetic tilt angle, a measure of the planar anisotropy of the magnetic field, is found to be a powerful tool for diagnosing convergence independent of initial magnetic field topology.
机译:磁吸不稳定性(MRI)的发现主导了现代吸积盘理论。尽管流体动力圆盘满足瑞利准则,并且在这样的圆盘中没有已知的明确湍流路径,但是等离子体的弱磁化圆盘需要经过MRI检查,并将变成湍流。这种由MRI驱动的磁流体动力学湍流在径向磁场和方位磁场之间产生强烈的各向异性相关性,从而将角动量向外传播。吸积盘在各种天体系统中起着两项至关重要的作用:旋转气体重力坍塌的中间步骤,在该过程中,盘将角动量向外传递并允许材料向内下落。作为动力源,落物的重力势能可以转化为光度。吸积盘在宇宙中所有尺度的天体物理过程中都很重要。从第一原理研究吸积是困难的,因为已证明湍流系统的解析处理非常有限。因此,到目前为止,计算机仿真一直是研究非线性系统的最前沿。虽然研究吸积盘是必需的,但并不是万灵丹。湍流天体系统的完整三维模拟需要巨大的计算能力,即使复杂的现代超级计算机也无法获得。这些局限性使得必须使用局部模型,在该模型中模拟整个磁盘的较小空间区域,并将数值分辨率限制在可行范围内。这些折衷方案虽然必要,但有可能在结果模拟中引入数值伪像。了解如何将这些伪影与真正的物理现象区分开来并最大程度地减少其影响,对于构建可以做出可靠的天体物理学预测的模拟至关重要,这是此处提出的工作的主要关注点;使用局部模型是基于以下假设:这些模型可以准确捕获全球天体物理磁盘一小块的动态。通过研究全球模拟的局部区域,对该假设进行了详细测试。为了达到与局部模拟中使用的分辨率相当的分辨率,使用了对流算法,流体方程的半拉格朗日重构,可以使计算效率提高一个数量级。结果发现,整体模拟中的湍流与局部模型在中小尺度上是一致的,并且磁通量的存在以类似于局部模拟的方式刺激了整体模拟中的角动量传输。但是,由于无法精确捕获在全局模拟中看到的磁通量的时间演变,这种通量-应力连接的重要性显示出对局部模型有效性的怀疑。探测全球模拟中以前无法获得的分辨率,这是此处提出的严格分辨率研究的基础。其中包括一项利用一系列不同分辨率和初始磁场拓扑的全局模拟进行的研究结果,其中对提议的数值收敛度量进行了探索。提出了建立天文重要测量值数值收敛所必需的分辨率约束以及证据,这些证据表明,在计算上需要的同时,使用适当的方位角分辨率对于实现收敛至关重要。发现大多数建议的度量标准对于MRI驱动的湍流都是有用的诊断方法,但是由于它们依赖于初始磁场拓扑结构,因此它们作为收敛的度量标准而受挫。与此相反,发现磁倾斜角是磁场平面各向异性的量度,是独立于初始磁场拓扑结构诊断收敛的强大工具。

著录项

  • 作者

    Sorathia, Kareem.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Applied Mathematics.;Physics Astrophysics.;Physics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号