首页> 外文学位 >Ultrafast dynamics of biological electron transfer over short distances.
【24h】

Ultrafast dynamics of biological electron transfer over short distances.

机译:生物电子在短距离内传输的超快动力学。

获取原文
获取原文并翻译 | 示例

摘要

Photoinduced electron transfer reaction plays a pivotal role in regulating many light-switched enzyme activities such as photosynthesis and circadian rhythm. In the biological system, the donor-acceptor distance may vary from a few angstroms to tens of angstroms. For the past several decades, long distance (>14 angstroms) electron transfer has been well studied. However, understanding the short distance transfer is technically limited due to temporal resolution. In the dissertation, we address this issue with the use of ultrafast spectroscopy and investigate a protein model system of Desulfovibrio vulgaris flavodoxin. Using the flavin cofactor, we initiate the electron-transfer process by ultrashort laser pulse. By monitoring time-dependent laser induced fluorescence and absorption change, we unravel the associated elementary dynamics and elucidate key factors (static reaction energy, environment dynamic relaxation, and distance variant) that affect the rate of electron transfer. With the site-directed mutagenesis, we first block the electron-transfer channel by replacing the tryptophan and tyrosine donor with phenylalanine. The inert mutant thus shows the time constants of active-site solvation ranging from several picoseconds to hundreds of picoseconds. Subsequently, from the native flavodoxin, we isolate the donor of tryptophan and tyrosine adjacent to the acceptor, and determine the individual transfer rate and the complete electron-transfer cycle. At the same time, by altering the critical redox-sensitive residues, different redox potentials for the acceptor to convert from oxidized to one-electron reduced, and from one-electron reduced to two-electron reduced states are generated. From such a great variety of driving forces, the result shows a strong correlation between the rates of electron transfer and the reaction energy. A subpicosecond dynamics is substantially slow down to a few picoseconds with a reduced energy of about 0.5--0.6 eV. Some slower processes in several picoseconds are shown strongly coupled with the active-site solvation, thereby exhibiting a decay behavior in a non-single exponential way. Surprisingly, the rate of back electron transfer is found not directly related to such energy potential change but is otherwise more sensitive to the solvation involvement throughout the cycle. In the final part, we change the donor-acceptor distance by locating the tryptophan donor at different places one at a time. From W60 to the replaced L67W, the edge-to-edge distance to the acceptor is lengthened from 3.7 angstroms to 8--9 angstroms, and the rate of electron transfer is significantly decreased from subpicosecond to nanosecond time scales. In conclusion, our study has resolved several important parameters for understanding the electron transfer occurring in several angstroms that are key to the nonequilibrated reactions in biology.
机译:光诱导的电子转移反应在调节许多光开关酶的活性如光合作用和昼夜节律中起着关键作用。在生物系统中,供体-受体的距离可能从几埃到几十埃不等。在过去的几十年中,对长距离(> 14埃)电子传输进行了深入研究。但是,由于时间分辨率,对短距离传输的理解在技术上受到限制。在本文中,我们使用超快光谱技术解决了这个问题,并研究了寻常脱硫黄藻毒素蛋白模型系统。使用黄素辅因子,我们通过超短激光脉冲启动电子转移过程。通过监测随时间变化的激光诱导的荧光和吸收变化,我们阐明了相关的基本动力学,并阐明了影响电子传输速率的关键因素(静态反应能,环境动态弛豫和距离变化)。通过定点诱变,我们首先通过用苯丙氨酸替代色氨酸和酪氨酸供体来阻断电子转移通道。惰性突变体因此显示出活性位点溶剂化的时间常数,范围从几皮秒到几百皮秒。随后,从天然的黄酮毒素中,我们分离了受体附近的色氨酸和酪氨酸供体,并确定了个体转移速率和完整的电子转移周期。同时,通过改变关键的氧化还原敏感残基,产生了不同的氧化还原电势,所述不同的氧化还原电势使受体从氧化还原为单电子还原态,以及从一电子还原为两电子还原态。从如此众多的驱动力中,结果显示出电子转移速率与反应能之间的强相关性。亚皮秒的动态速度基本上会减慢到几皮秒,能量降低约0.5--0.6 eV。显示了几皮秒内一些较慢的过程与活性位点溶剂化强烈耦合,从而以非单指数方式表现出衰减行为。出人意料的是,发现反向电子转移的速率与这种能量势的变化没有直接关系,但对整个循环中的溶剂化作用更为敏感。在最后一部分中,我们通过将色氨酸供体一次放置在不同的位置来更改供体-受体距离。从W60到替换的L67W,到受体的边到边距离从3.7埃延长到8--9埃,并且电子传输速率从亚皮秒级降低到纳秒级。总之,我们的研究解决了几个重要的参数,以了解在几埃中发生的电子转移,这是生物学中非平衡反应的关键。

著录项

  • 作者

    He, Ting-fang.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号