首页> 外文学位 >Microbially-mediated geochemical cycling of iron and nitrogen within the granite-hosted subsurface of Henderson Mine, CO.
【24h】

Microbially-mediated geochemical cycling of iron and nitrogen within the granite-hosted subsurface of Henderson Mine, CO.

机译:由微生物介导的科罗拉多州亨德森矿位于花岗岩中的地下铁和氮的地球化学循环。

获取原文
获取原文并翻译 | 示例

摘要

Microbial life unambiguously inhabits the deep, terrestrial subsurface. Although the nutrient and energy sources supporting deep life are largely unconstrained, they are likely to be geochemically--derived. Novel organisms and energy sources are consistently discovered in the subsurface, and expand the range of microbial diversity and biogeochemical processes encountered on Earth. This dissertation connects metabolisms predicted to support subsurface life inhabiting the fluids circulating through granite fractures and pore spaces in Henderson Mine, Colorado at a depth of 3000 feet to the specific microbes that are detected by culture-dependent and independent methods. The thermodynamics of potential inorganic redox reactions in Henderson fluids reveal that oxidation of metals (Fe, Mn), and reduced sulfur and nitrogen compounds with O2 can support microbes energetically, as can metabolisms utilizing nitrate, nitrite or metal-oxides as electron acceptors. Sulfate reduction is not favorable in Henderson fluids, in contrast to other deep mines where it is a dominant metabolism. Targeted culturing of chemolithoautotrophic microbes from Henderson resulted in the isolation of Ralstonia HM08--01 that grows by oxidizing Fe(II) with O2 at circumneutral pH. This organism was abundant in 16S rRNA clone libraries of Henderson fluids, signifying that Fe--oxidation may support a significant proportion of biomass. The Fe-oxides produced in experiments were colloidal (50--100 nm diameter), persistent phases that would influence metal and nutrient transport if they form at Henderson. Aside from iron, ammonium (>100 muM in borehole fluids) is an important energy source at Henderson. Nitrification is possibly mediated by Crenarchaea living in the Henderson fluids that possess the amoA gene for ammonia oxidation, and Nitrospira bacteria that possess the nxrB gene for nitrite oxidation. Although NH4+ substituted into K+--bearing minerals could theoretically supply subsurface microbes with geological ammonium, no ammonium was detected in Henderson minerals. Phylogenetic analysis of nifH genes for nitrogen fixation present at Henderson suggest the novel phylum of Henderson candidate division bacteria may be nitrogen fixers, and that ammonium is sourced biologically. These findings inform the reactions that are known to support subsurface life, the source of nutrients and energy sources for subsurface life, and the diversity of life that inhabits the subsurface.
机译:微生物生活明确地生活在深层的地面之下。尽管支持深层生命的营养素和能源在很大程度上不受限制,但它们很可能是地球化学来源的。在地下不断发现新的生物和能源,并扩大了地球上遇到的微生物多样性和生物地球化学过程的范围。这篇论文将被预测为支持地下生活的新陈代谢与居住在科罗拉多州亨德森矿(Henderson Mine,科罗拉多州)3000英尺深处的花岗岩裂缝和孔隙空间中循环的流体与通过培养依赖和独立方法检测的特定微生物联系起来。亨德森流体中潜在的无机氧化还原反应的热力学表明,金属(铁,锰)以及还原的O2还原的硫和氮化合物可以大力支持微生物,利用硝酸盐,亚硝酸盐或金属氧化物作为电子受体的代谢也可以。硫酸盐的还原在亨德森流体中不利,与其他深部矿山相反,后者是主要的新陈代谢。亨德森化石自养微生物的针对性培养导致分离的Ralstonia HM08--01,其通过在环境pH值下用O2氧化Fe(II)来生长。该生物在亨德森流体的16S rRNA克隆文库中含量丰富,表明Fe-氧化可能支持很大比例的生物量。实验中产生的铁氧化物是胶体(直径为50--100 nm),如果它们在亨德森形成,则将影响金属和养分的转运。除了铁,铵(在井眼流体中> 100μM)是亨德森的重要能源。硝化作用可能由生活在具有氨氧化的amoA基因的亨德森流体中的克氏藻和具有亚硝酸盐氧化的nxrB基因的硝化细菌介导。尽管从理论上讲,用含K +的矿物替代NH4 +可以为地下微生物提供地质铵,但在Henderson矿物中未检测到铵。亨德森公司针对固氮的nifH基因的系统进化分析表明,亨德森候选分裂细菌的新门可能是固氮剂,而且铵是生物学来源。这些发现告知了支持地下生命的反应,地下生命的营养来源和能量来源以及居住在地下的生物的多样性。

著录项

  • 作者

    Swanner, Elizabeth Dawn.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Biogeochemistry.;Geochemistry.;Geobiology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号