首页> 美国卫生研究院文献>Frontiers in Microbiology >Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine CO
【2h】

Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine CO

机译:科罗拉多州亨德森矿的花岗岩基地下固氮和硝化作用的潜力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., ). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluid chemistry included N2, NH4+ (5–112 μM), NO2 (27–48 μM), and NO3 (17–72 μM). In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier transform infrared (FTIR) microscopy and none-contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via nitrification.
机译:建立了深层地下生命的存在,但很少有研究调查支持深层生命的氮的起源。以前,16S rRNA基因调查对美国科罗拉多州亨德森矿区深达3000英尺深的井眼排出的地下流体中的微生物群落进行了分类(Sahl等人,)。流体化学和微生物群落的先验表征为进一步研究NH4 + 的来源奠定了基础。报道的流体化学包括N2,NH4 + (5-112μM),NO2 -(27-48μM)和NO3​​ -( 17–72μM)。在这项研究中,主要是在流星流体中的低NH4 + 浓度与在岩石反应液中较高的NH4 + 之间的相关性用来假设NH4 + 源自含NH4 + 的黑云母。但是,通过傅里叶变换红外(FTIR)显微镜和不含NH4 + 的样品分析了来自岩体和矿体矿物的黑云母样品。然而,从含高NH4 + 的液体样品的DNA中成功扩增出了固氮酶编码基因nifH,这表明地下微生物具有固定N2的能力。如果这样,则不受控制的固氮作用可能是流体中较高的NH4 + 浓度的原因。此外,分别从高NH4 + 液体DNA中扩增出古细菌铵单加氧酶和亚硝酸盐氧化还原酶的amoA和nxrB基因,而细菌amoA基因则没有。根据16S rRNA序列分析,推定的硝化生物与其他地下部位检测到的铵氧化Crenarchaeota和亚硝酸盐氧化硝化螺菌密切相关。热力学计算强调了NH4 + 作为地下硝化途径能源的重要性。这些结果表明,亨德森的地下微生物群落通过固氮能力而适应低营养和低能环境,固氮可以通过硝化作用支持地下生物量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号