首页> 外文学位 >Allometric scaling and metabolic ecology of microorganisms and major evolutionary transitions.
【24h】

Allometric scaling and metabolic ecology of microorganisms and major evolutionary transitions.

机译:微生物的异速生长和代谢生态学以及主要的进化转变。

获取原文
获取原文并翻译 | 示例

摘要

My dissertation centers around investigating big-picture questions related to understanding the consequences of metabolism and energetics on the evolution, ecology, and physiology of life.;The evolutionary transitions from prokaryotes to unicellular eukaryotes to multicellular organisms were accompanied by major innovations in metabolic design. In my first chapter, I show that the scaling of metabolic rate, population growth rate, and production efficiency with body size have changed across these transitions. Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly in metazoans, so Kleiber's 3/4 power scaling law does not apply universally across organisms. This means that major changes in metabolic processes during the early evolution of life overcame existing physical constraints, exploited new opportunities, and imposed new constraints on organism physiology.;Surface areas of physiological structures of organisms impose fundamental constraints on metabolic rate. In my second chapter, I demonstrate that organisms have a variety of options for increasing the scaling of the area of their metabolic surfaces with body sizes. I develop models and examples illustrating the role of cell membrane elaborations, mitochondria, vacuoles, vesicles, inclusions, and shape-shifting in the architectural design, evolution, and ecology of unicellular microbes. I demonstrate how these surface-area scaling adaptations have played important roles in the evolution of major biological designs of cells and the physiological ecology of organisms.;In my third and final chapter, I integrate and synthesize findings from the previous two chapters with important developments in geochemistry, microbiology, and astrobiology in order to identify the fundamental physical and biological dimensions that characterize a metabolic theory of ecology of microorganisms. These dimensions are thermodynamics, chemical kinetics, physiological harshness, cell size, and levels of biological organization. I show how addressing these dimensions can inform understanding of the physical and biological factors governing the metabolic rate, growth rate, and geographic distribution of cells. I propose a unifying theory to understand how the major ecological and evolutionary transitions that led to increases in levels of organization of life, such as endosymbiosis, multicellularity, eusociality, and multi-domain complexes, influences the metabolism and growth and the metabolic scaling of these complexes.
机译:我的论文集中在研究与理解代谢和能量学对生命的进化,生态学和生理学的影响有关的大问题上;从原核生物到单细胞真核生物到多细胞生物的进化过渡伴随着代谢设计的重大创新。在我的第一章中,我证明了代谢率,人口增长率和生产效率随体重的变化在这些转变中都发生了变化。在原核生物中,代谢率与体重呈线性关系,在原生生物中呈线性关系,在后生动物中呈亚线性关系,因此Kleiber的3/4幂尺度定律不适用于整个生物体。这意味着在生命的早期进化过程中,代谢过程的重大变化克服了现有的身体限制,利用了新的机会,并对生物体生理施加了新的限制。在我的第二章中,我证明了生物体具有多种选择,可以随着体型增加其代谢表面的面积比例。我开发了模型和示例来说明细胞膜修饰,线粒体,液泡,囊泡,内含物和形状变化在单细胞微生物的建筑设计,进化和生态学中的作用。我展示了这些表面积缩放适应如何在细胞的主要生物学设计和生物生理生态学的演变中发挥重要作用。;在第三章和最后一章中,我将前两章的发现与重要发展相结合并进行综合为了确定表征微生物生态学代谢理论的基本物理和生物学方面的知识,在地球化学,微生物学和天体生物学领域进行了研究。这些维度是热力学,化学动力学,生理粗糙度,细胞大小和生物组织水平。我展示了解决这些问题的方式如何可以帮助人们理解控制细胞代谢率,生长率和地理分布的物理和生物学因素。我提出一个统一的理论,以理解导致生命组织水平提高的主要生态和进化转变(例如共生,多细胞性,善意性和多域复合物)如何影响这些物质的代谢和生长以及代谢规模复合体。

著录项

  • 作者

    Okie, Jordan G.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Biology Ecology.;Biology Evolution and Development.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号