首页> 外文学位 >Magneto-Optical Studies of IndiumGalliumArsenic Quantum Wells and Devices used for Spintronics Applications.
【24h】

Magneto-Optical Studies of IndiumGalliumArsenic Quantum Wells and Devices used for Spintronics Applications.

机译:铟镓砷自旋电子学应用中的量子阱和器件的磁光研究。

获取原文
获取原文并翻译 | 示例

摘要

Spintronics has been one of the most rapidly developing research areas in condensed matter physics. Exploiting the electron's spin degree of freedom is hoped to yield new and novel technological applications. The ability to generate a non-equilibrium spin population, to manipulate the spins, and to be able to detect them have been the most intensely studied subjects in this research area. In this dissertation, spin injection from an Fe (Iron) ferromagnetic spin polarizing contact into two dimensional semiconductor hetero-structures were investigated using a device called a "Spin-LED" also known as a Spin Light Emitting Diode. Due to its high Curie temperature, Fe is a very promising candidate for practical applications at room temperature. This dissertation is comprised of two separate experimental studies outlined as follows. (1) We have investigated the Polarization of the Spin LEDs as function of Bias. In addition to the exciton we see a feature called "LV" (Low Voltage) that is bias and temperature dependent. We have compared the Spin life time TS measured for the exciton, LV feature in the device (Spin LED) and for the exciton in the unprocessed InGaAs QW. The LV feature shows polarization in excess of 70% and the polarization changes sign as we increase the magnetic field from B = 0 Tesla to B = 7 Tesla. (2) We see intensity oscillations in for the photoluminescence for exciton in the InGaAs QWs. We attribute these oscillations to the Optical Aharonov-Bohm effect. A shift in the oscillations has been observed when the sample relative angle with respect to the magnetic field is changed. These oscillations are present only in the Faraday's geometry and disappear in the Voigt geometry.
机译:自旋电子学一直是凝聚态物理学中发展最快的研究领域之一。利用电子的自旋自由度有望产生新的和新颖的技术应用。生成非平衡自旋种群,操纵自旋以及能够检测到自旋的能力一直是该研究领域中研究最深入的主题。在这篇论文中,使用称为“自旋发光二极管”的设备,研究了从Fe(铁)铁磁自旋极化接触到二维半导体异质结构的自旋注入。由于居里温度高,铁是室温下实际应用中非常有希望的候选者。本论文包括两个独立的实验研究,概述如下。 (1)我们研究了自旋LED的偏振与偏置的关系。除激子外,我们还看到一个称为“ LV”(低电压)的特性,它与偏置和温度有关。我们比较了在器件(自旋LED)中的激子,LV特性和未处理的InGaAs QW中的激子所测得的自旋寿命TS。 LV功能显示极化超过70%,并且随着我们将磁场从B = 0 Tesla增加到B = 7 Tesla,极化改变了符号。 (2)我们看到InGaAs量子阱中激子的光致发光强度振荡。我们将这些振荡归因于光学阿哈罗诺夫-波姆效应。当样品相对于磁场的相对角度改变时,观察到振荡的变化。这些振荡仅在法拉第几何中存在,而在Voigt几何中消失。

著录项

  • 作者

    Ali, Tariq.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Physics Quantum.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号