首页> 外文学位 >Supramolecular approaches to selective mercury cation binding and crystal engineering of covalent crystalline materials.
【24h】

Supramolecular approaches to selective mercury cation binding and crystal engineering of covalent crystalline materials.

机译:选择性汞阳离子结合的超分子方法和共价晶体材料的晶体工程。

获取原文
获取原文并翻译 | 示例

摘要

The first part of this dissertation focuses on the preparation, characterization and Hg2+ binding efficiency of a microparticulate sorbent based on a novel p-xylyl-peraza[2.2.2]cryptand-based polymer. The polymer was characterized in terms of surface morphology, size distribution and porosity. Sorption kinetics were measured and fitted to a homogeneous surface diffusion model whereby intraparticle diffusion parameters were determined. In order to gain insight into the mechanism(s) of binding, adsorption isotherms were constructed and sorbing capacity and specificity of a similar but non-macrocycle-containing polymer were investigated. Desorption studies were also carried out and the regenerability of the sorbent was demonstrated. The mercury capacity and selectivity of the sorbent in the presence of calcium ions was compared to the non-macrocycle-based polymer as well as a commercially available ion-exchange resin used for mercury removal.;The second part of this dissertation involves the use of non-covalent intermolecular interactions in the purposeful design of dihydrogen-bonded (hydridic-to-protonic hydrogen bonding) crystalline molecular solids in the pursuit of extended covalent crystalline materials. The field of crystal engineering seeks to understand and utilize the intermolecular interactions that organize molecular crystals. The properties of covalent solids depend strongly on their crystallinity. Topochemical transformation of dihydrogen bonds to covalent bonds (M--H...H--X → M--X + H2 ) in crystalline solids potentially merges these areas by converting molecular to covalent crystals. Retaining the long-range order through this type of transformation faces two challenges: (1) geometry change on M--X bond formation and (2) gas release within the lattice. In dihydrogen-bonded salts where either the cationic or anionic partner is much larger than the other, the packing of the large partners determines the lattice dimensions. These structures can tolerate bond reorganization and gas release, maintaining their crystalline order. In an effort to extend previous demonstrations of this approach based on large cations and simple borohydride anions, the present effort expands the range of large cations studied and explores the use of bulky 2-substituted benzimidazole boranes, zwitterionic structures that contain both the bulky cation and hydridic partner within the same molecule.
机译:本论文的第一部分着重于基于新型对二甲苯基-peraza [2.2.2] cryptand-based聚合物的微粒吸附剂的制备,表征和Hg2 +的结合效率。根据表面形态,尺寸分布和孔隙率表征聚合物。测量吸附动力学并将其拟合到均匀的表面扩散模型,从而确定颗粒内扩散参数。为了深入了解结合机理,构建了吸附等温线,并研究了类似但不含大环的聚合物的吸附能力和特异性。还进行了脱附研究,并证明了吸附剂的可再生性。将钙离子存在下吸附剂的汞容量和选择性与非基于大环的聚合物以及用于去除汞的可商购的离子交换树脂进行了比较。本论文的第二部分涉及使用为了追求扩展的共价晶体材料,在有目的地设计二氢键(氢键到质子氢键)晶体分子固体中的非共价分子间相互作用。晶体工程领域试图了解和利用组织分子晶体的分子间相互作用。共价固体的性质在很大程度上取决于其结晶度。结晶固体中二氢键拓扑化学转化为共价键(M–H ... H–X→M–X + H2)可能通过将分子转化为共价晶体而合并这些区域。通过这种类型的转换保持远距离有序面临两个挑战:(1)MX键形成时的几何形状变化和(2)晶格内的气体释放。在阳离子或阴离子配体比另一方大得多的二氢键合盐中,大分子的堆积决定了晶格尺寸。这些结构可以耐受键的重组和气体释放,保持其晶体顺序。为了扩展以前基于大阳离子和简单硼氢化物阴离子的该方法的论证,本研究扩大了研究的大阳离子的范围,并探索了使用大体积的2-取代的苯并咪唑硼烷,两性离子结构同时包含大体积的阳离子和同一分子内的氢配体。

著录项

  • 作者

    Manes, Karrie M.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Chemical.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号