首页> 外文学位 >Exploring new detection schemes for molecular detection, nucleic acid research, and the study of in situ cellular chemistry.
【24h】

Exploring new detection schemes for molecular detection, nucleic acid research, and the study of in situ cellular chemistry.

机译:探索用于分子检测,核酸研究和原位细胞化学研究的新检测方案。

获取原文
获取原文并翻译 | 示例

摘要

In complex and dynamic environments such as biological systems, new detection schemes that are quick, inexpensive, and non-invasive are necessary to provide analyses with high quality data. To this end, the research presented here is focused on exploring new detection schemes for molecular detection, nucleic acid research, and the study of in situ cellular chemistry. This research investigates the use of surface enhanced Raman spectroscopy (SERS) as the primary detection technique, starting first with experiments designed to broaden and improve the application of SERS within biomedical settings and then applying SERS to further the fundamental understanding of relevant biomedical topics such as DNA mutation and stem cell differentiation.;The first set of experiments to be discussed involves a methodology to produce solid state nanogap electrodes. In Chapter 2 a combination of oligonucleotide-based molecular lithography and traditional photolithography is used to create finely tunable nanogap electrodes and to explore the fabrication of Raman enhancing substrates. Solid state nanogaps represent a relevant application of nanolithography as they can be used in sensitive chemical and biological detection schemes and are invaluable for investigating molecular electronic candidates, for researching biological systems, and as substrates for surface enhanced Raman spectroscopic studies. Here, nanogaps are implemented for monitoring by using two detection schemes, one optical (SERS) and one electronic (current-voltage responses). Using the strong Raman enhancements created by the nanogap, Raman spectra and current voltage traces show that the oligonucleotides used as the molecular resist are degraded during processing, that some of the degraded oligonucleotides are removed, and that fresh oligonucleotides are adsorbed.;Next, a methodology is explored to enable the collection of statistically significant SERS data using single nucleotide polymorphisms as a model system. We report a method of using surface enhanced Raman spectroscopy to probe single stranded DNA for genetic markers. Single-stranded oligonucleotides functionalized with gold nanoparticles are hybridized with oligonucleotides adsorbed to photolithographically defined gold surfaces thus creating a surface enhanced Raman environment around the DNA duplex. With this design characteristic Raman spectra are analyzed for differences between DNA duplexes formed from complementary oligonucleotides, completely mismatched oligonucleotides, and those formed from oligonucleotides that have a mid-sequence single nucleotide mismatch. The results show that statistically significant differences in Raman intensity for characteristic peaks can be collected for the three cases. This method is then improved upon by analyzing unmodified genes of moderate length by introducing the genes into a surface enhanced Raman complex. With this design we are able to collect characteristic Raman spectra about the genes and to again detect genetic markers such as single-nucleotide polymorphisms but also a variety of additional polymorphic regions. Results show that strands containing one of three different types of polymorphism can be differentiated using statistically significant peak position differences and trends regarding Raman intensity.;Finally, SERS is utilized in a more dynamic biological environment---in living human stem cells. Living cells uptake gold nanoparticles and sequester these particles in the endosomal pathway. Once inside the endosome, nanoparticles aggregate into clusters that give rise to large spectroscopic enhancements that can be used to elucidate local chemical environments through the use of surface enhanced Raman spectroscopy. This research uses colloidal gold nanoparticles to create volumes of surface-enhanced Raman scattering (SERS) within living human adipose derived adult stem cells enabling molecular information to be monitored. We exploit this technique to spectroscopically observe chemical changes that occur during the adipogenic differentiation of human adipose derived stem cells over a period of 22 days, monitoring both the production of lipids and the complex interplay between lipids, proteins, and chemical messengers involved in adipogenesis.
机译:在复杂且动态的环境(例如生物系统)中,必须快速,廉价且无创的新检测方案来提供具有高质量数据的分析。为此,本文提出的研究重点是探索用于分子检测,核酸研究和原位细胞化学研究的新检测方案。这项研究调查了表面增强拉曼光谱(SERS)作为主要检测技术的使用,首先从旨在扩大和改善SERS在生物医学环境中的应用的实验开始,然后将SERS应用于对相关生物医学主题的基本理解,例如DNA突变和干细胞分化。;将要讨论的第一组实验涉及生产固态纳米间隙电极的方法。在第二章中,将基于寡核苷酸的分子光刻技术与传统的光刻技术相结合,以创建可微调的纳米间隙电极,并探索拉曼增强衬底的制造。固态纳米间隙代表了纳米光刻的相关应用,因为它们可用于敏感的化学和生物检测方案,对于研究分子电子候选物,研究生物系统以及作为表面增强拉曼光谱研究的底物具有不可估量的价值。在这里,通过使用两种检测方案(一种光学(SERS)和一种电子(电流-电压响应))来实现纳米间隙的监控。使用纳米间隙产生的强拉曼增强作用,拉曼光谱和电流电压迹线表明,用作分子抗蚀剂的寡核苷酸在加工过程中被降解,一些降解的寡核苷酸被去除,新的寡核苷酸被吸附。探索了使用单核苷酸多态性作为模型系统来收集统计上有意义的SERS数据的方法。我们报告了一种使用表面增强拉曼光谱技术来探测单链DNA的遗传标记的方法。用金纳米颗粒官能化的单链寡核苷酸与吸附到光刻定义的金表面的寡核苷酸杂交,从而在DNA双链体周围形成表面增强的拉曼环境。通过这种设计特性,可以分析拉曼光谱,分析互补寡核苷酸,完全错配的寡核苷酸和具有中等序列单核苷酸错配的寡核苷酸形成的DNA双链体之间的差异。结果表明,在三种情况下,可以收集到特征峰的拉曼强度的统计学差异。然后通过将基因导入表面增强的拉曼复合物中来分析中等长度的未修饰基因,从而对该方法进行改进。通过这种设计,我们能够收集有关基因的特征拉曼光谱,并再次检测遗传标记,例如单核苷酸多态性以及各种其他多态性区域。结果表明,可以使用具有统计学意义的峰位置差异和有关拉曼强度的趋势来区分包含三种不同类型多态性之一的链。最后,SERS被用于更具活力的生物环境中-在活的人类干细胞中。活细胞摄取金纳米颗粒并将其隔离在内体途径中。进入内体后,纳米粒子会聚集成簇,从而引起大光谱增强,可通过使用表面增强拉曼光谱来阐明局部化学环境。这项研究使用胶体金纳米粒子在活的人类脂肪来源的成体干细胞中创建一定体积的表面增强拉曼散射(SERS),从而可以监控分子信息。我们利用这项技术来光谱观察人类脂肪衍生干细胞在22天的成脂分化过程中发生的化学变化,监测脂质的产生以及参与脂肪形成的脂质,蛋白质和化学信使之间的复杂相互作用。

著录项

  • 作者

    Moody, Benjamin Patrick.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号