首页> 外文学位 >Hybrid CMOS SiPIN detectors as astronomical imagers.
【24h】

Hybrid CMOS SiPIN detectors as astronomical imagers.

机译:混合CMOS SiPIN检测器作为天文成像仪。

获取原文
获取原文并翻译 | 示例

摘要

Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors.;The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1kx1k to 4kx4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding.;Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge Transfer (IPCT), is introduced. This effect has an extremely significant impact on x-ray astronomy. For persistence, a new theory and accompanying simulations are presented to explain latent images in the HyViSI.;In consideration of these artifacts and the overall measured performance, we argue that HyViSI sensors are ready for application in certain regimes of astronomy, such as telescope guiding, measurements of fast planetary transits, and x-ray imaging, but not for others, such as deep field imaging and large focal plane astronomical surveys.
机译:自1969年问世以来,电荷耦合器件(CCD)一直占据着光学和X射线天文学的主导地位。直到最近,通过改进设计和制造方法,使用互补金属氧化物半导体(CMOS)技术的成像仪在科学成像中已在CCD上崭露头角。 。现在,我们正处在一个天文学家可能开始设计使用CMOS成像器的光学望远镜相机的时代。本论文的前三章主要由介绍性材料组成。在其中,我们讨论了在天文应用中CMOS成像器比CCD提供的潜在优势。我们根据用于评估和比较科学成像仪的标准度量标准比较这两种技术:暗电流,读取噪声,线性度等。我们还将讨论CMOS器件的新颖功能以及它们对天文学的好处。尤其是,我们专注于一种特定类型的混合CMOS传感器,该传感器使用硅PIN光电二极管来检测光,以克服商业CMOS传感器的不足;其余四章重点介绍一种特定类型的混合CMOS硅PIN传感器: Teledyne混合可见硅PIN成像器(HyViSI)。在第四章和第五章中,介绍了在实验室和Kitt Peak 2.1m望远镜上测试HyViSI检测器的结果。我们介绍了从1kx1k到4kx4k格式的许多HyViSI设备的标准检测器度量标准的实验室测量值。我们还将介绍用于控制检测器的SIDECAR读出电路。然后,我们将展示它们在光度学,天体测量学,变异性测量以及望远镜聚焦和引导方面在望远镜上的表现;最后,在最后两章中,我们介绍了关于探测器伪像的结果,例如像素串扰,电子串扰和图像持久性。介绍了一种在文献中未曾讨论过的像素串扰的形式,我们称之为像素间电荷转移(IPCT)。这种影响对X射线天文学具有极大的影响。为了保持持久性,提出了一种新的理论和伴随的模拟来解释HyViSI中的潜像。考虑到这些伪影和整体测量性能,我们认为HyViSI传感器已准备好在某些天文学领域中应用,例如望远镜制导,快速行星行进测量和X射线成像,但不适用于其他领域,例如深场成像和大型焦平面天文测量。

著录项

  • 作者

    Simms, Lance Michael.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.;Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号