首页> 外文学位 >Site-Controlled III-Nitride Quantum Dots.
【24h】

Site-Controlled III-Nitride Quantum Dots.

机译:站点控制的III型氮化物量子点。

获取原文
获取原文并翻译 | 示例

摘要

Group III-nitride semiconductor quantum dots (QDs) exhibit large exciton binding energy (> 26 meV) and band offsets, making them an ideal candidate to exploit various quantum optical effects at the high temperature including single-photon emission, strong-coupling, indistinguishable photon generation and polariton lasing. These phenomena can lead to future quantum information technology. The practical use of the III-nitride QDs as quantum light sources requires the addressability of a single QD, both in its position and emission energy. To date, most semiconductors QDs are epitaxially grown by the self-assembled processes such as the Stranski-Krastanov growth which possess very limited control over the QDs' positions and dimensions, making them difficult to be utilized at the device level.;In this thesis, we investigate novel processes for the fabrication of site- and dimension-controlled III-nitride QDs. Two lithography-based techniques have been considered including selective area epitaxy (SAE) and top-down etching. In SAE, the formation QDs is controlled by the pre-patterned mask openings. Different source supply and growth mechanisms determine QD's growth morphology. Morphology evolution in SAE is studied experimentally which qualitatively agrees with the theoretical phase-field model. The non-uniformity of the InGaN thickness was found to be the origin of the broad photoluminescence (PL). In the top-down etching approach, InGaN QDs are formed by etching a patterned InGaN single quantum well. Each QD is disk-shaped and embedded in a nanopillar. Strong and distinct PL signal of a single quantum disk was observed even at room temperature. The emission was found to exhibit characteristics from a discrete energy state that is homogeneously broadened. The single InGaN QD was extensively studied using micro-PL. A model based on 2-dimensional Poisson's equation was developed to quantitatively explain the large blue shift observed in the experiment. The saturation of the PL linewidth at high temperatures was also interpreted using a sidewall charge center model.;To demonstrate the scalability and device integration of the site-controlled Ill-nitride QDs, large-area nanolithographic processes and photonic-crystal optical cavities have been developed. Pattern shrinkage by spacer and by electrodeposition were introduced and demonstrated, with the former aiming at sub-10 nm patterning and the latter at large-scale nanofabrication.
机译:III族氮化物半导体量子点(QD)表现出大的激子结合能(> 26 meV)和能带偏移,使其成为在高温下利用各种量子光学效应的理想候选物,包括单光子发射,强耦合,难以区分光子产生和极化激射。这些现象可能导致未来的量子信息技术。 III族氮化物量子点作为量子光源的实际使用需要单个量子点的寻址能力,无论是其位置还是发射能量。迄今为止,大多数半导体量子点是通过诸如Stranski-Krastanov生长的自组装工艺外延生长的,这种工艺对量子点的位置和尺寸具有非常有限的控制,这使得它们很难在器件级使用。 ,我们调查了用于现场控制和尺寸控制的III型氮化物QD的新颖工艺。已经考虑了两种基于光刻的技术,包括选择性区域外延(SAE)和自顶向下蚀刻。在SAE中,形成的QD由预先构图的掩模开口控制。不同的源供应和增长机制决定了QD的增长形态。实验研究了SAE的形态演化,其定性与理论相场模型相吻合。发现InGaN厚度的不均匀性是宽光致发光(PL)的起源。在自顶向下蚀刻方法中,通过蚀刻图案化的InGaN单量子阱来形成InGaN QD。每个QD均为盘状,并嵌入纳米柱中。即使在室温下,也观察到单个量子盘的强而独特的PL信号。发现该发射表现出来自均匀扩展的离散能量状态的特性。使用micro-PL对单个InGaN QD进行了广泛的研究。建立了基于二维泊松方程的模型,以定量解释实验中观察到的大蓝移。还使用侧壁电荷中心模型解释了高温下PL线宽的饱和度。为了证明现场控制的III族氮化物量子点的可扩展性和器件集成度,已经进行了大面积纳米光刻工艺和光子晶体光学腔的研究。发达。介绍并演示了通过间隔物和通过电沉积进行的图案收缩,前者的目标是在10nm以下的图案上,而后者的目标是进行大规模的纳米加工。

著录项

  • 作者

    Lee, Leung Kway.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.;Physics Solid State.;Physics Quantum.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号