首页> 外文学位 >Steady and Transient Heat Transfer for Jet Impingement on Patterned Surfaces
【24h】

Steady and Transient Heat Transfer for Jet Impingement on Patterned Surfaces

机译:稳定和瞬态传热,用于在有图案的表面上进行射流撞击

获取原文
获取原文并翻译 | 示例

摘要

Free liquid-jet impingement is well researched due to its high heat transfer ability and ease of implementation. This study considers both the steady state and transient heating of a patterned plate under slot-free-liquid jet impingement. The primary working fluid was water (H2O) and the plate material considered was silicon. Calculations were done for Reynolds number (Re) ranging from 500 to 1000 and indentation depths from 0.000125 to 0.0005 m for three different surface configurations. The effect of using different plate materials and R-134a as the working fluid were explored for the rectangular step case. The distributions of the local and average heat-transfer coefficient and the local and average Nusselt number were calculated for each case. A numerical model based in the FIDAP computer code was created to solve the conjugate heat transfer problem. The model used was developed for Cartesian coordinates for both steady state and transient conditions.;Results show that the addition of surface geometry alters the fluid flow and heat transfer values. The highest heat-transfer coefficients occur at points where the fluid flow interacts with the surface geometry. The lowest heat-transfer coefficients are found in the indentations between the changes in geometry. The jet velocity has a large impact on the heat transfer values for all cases, with increasing jet velocity showing increased local heat-transfer coefficients and Nusselt number. It is observed that increasing the indentation depth for the rectangular and sinusoidal surfaces leads to a decrease in local heat transfer whereas for triangular patterns, a higher depth results in higher heat-transfer coefficient. The transient analysis showed that changing surface geometry had little effect on the time required to reach steady state. The selection of plate material has an impact on both the final maximum temperatures and the time required to reach steady state, with both traits being tied to the thermal diffusivity (alpha) of the material.
机译:自由液体射流撞击由于其高传热能力和易于实施而得到了充分的研究。这项研究考虑了无槽液体射流冲击下的图案板的稳态和瞬态加热。主要工作流体是水(H2O),所考虑的板材是硅。对于三种不同的表面配置,进行了雷诺数(Re)从500到1000以及压痕深度从0.000125到0.0005 m的计算。对于矩形阶梯情况,探讨了使用不同的板材和R-134a作为工作流体的效果。计算每种情况下的局部传热系数和平均传热系数的分布以及局部和平均努塞尔数的分布。建立了以FIDAP计算机代码为基础的数值模型,以解决共轭传热问题。开发了用于稳态和瞬态条件的直角坐标系的模型。结果表明,增加表面几何形状会改变流体流量和传热值。最高的传热系数出现在流体流动与表面几何形状相互作用的点上。在几何变化之间的凹痕中发现最低的传热系数。在所有情况下,射流速度都对传热值有很大影响,射流速度的增加表明局部传热系数和努塞尔数增加。可以看出,增加矩形和正弦表面的压痕深度会导致局部传热的减少,而对于三角形图形,深度越大,传热系数就越高。瞬态分析表明,改变表面几何形状对达到稳态所需的时间影响很小。板材的选择对最终的最高温度和达到稳态所需的时间都有影响,这两个特性都与材料的热扩散率(α)有关。

著录项

  • 作者

    Dobbertean, Mark Michael.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Mechanical engineering.
  • 学位 M.S.M.E.
  • 年度 2011
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号