首页> 外文学位 >Growth and Assembly of Gold Nanorods and Their Interactions with Fluorophores and Photochromic Molecules.
【24h】

Growth and Assembly of Gold Nanorods and Their Interactions with Fluorophores and Photochromic Molecules.

机译:金纳米棒的生长和组装及其与荧光团和光致变色分子的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Noble metal nanocrystals have drawn great attention in a wide range of research fields due to their extraordinary localized surface plasmon resonances, which are essentially collective charge density oscillations confined in metallic nanostructures. Their applications range from bioimaging, sensing and therapy in life sciences to plasmonic circuits and optical data storage in micro-optoelectronics. More attractively, they can be used to enhance light harvesting in solar energy conversion systems. In this thesis, I will systematically describe the preparation and assembly of gold nanorods and their interactions with fluorophores and photochromic molecules, both experimentally and theoretically.;I will first introduce my studies on high-index-faceted gold nanocrystals. Elongated tetrahexahedral (THH) gold nanocrystals have been prepared in high yields using a seed-mediated growth method. Structural characterizations reveal that they are single crystals enclosed by 24 high-index {037} facets. Electrochemical measurements have proven that these THH Au nanocrystals are more chemically active than octahedral Au nanocrystals that are enclosed by low-index {1111} facets. Next, I will demonstrate the formation of large-area, 3D ordered assemblies of Au nanostructures that have different sizes and shapes, including nanorods, polyhedra, nanocubes, and bipyramids, by droplet evaporation. The nature of the resultant assemblies is strongly dependent on the shape of Au nanostructures for single-component systems; while the assembly of binary nanorod mixtures is dependent on the relative diameters of two nanorod samples for the nanorods used in our experiments.;Most applications of plasmonic nanostructures are based on their interactions with other chemical/physical species. In my research work, gold nanorods interacting with photochromic molecules and fluorophores are extensively studied. For the case of photochromic molecules, I have demonstrated a plasmonic switch on the basis of the resonance coupling between single Au nanorods and photochromic molecules. An individual plasmonic switch is composed of a single nanorod and the surrounding photochromic molecules. Its modulation depth reaches 7.2 dB. The estimated power and energy required for operating such a single-nanorod plasmonic switch are ∼13 pW and ∼39 pJ. For the case of fluorophores, I will give a systematic description of my research on plasmon-fluorophore interactions. Excitation polarization-dependent plasmon-enhanced fluorescence, polarized emission, and modulation of fluorophore emission spectra by localized plasmon resonances will be experimentally demonstrated. The interactions between the plasmonic nanorods and the fluorophore molecules can be temporally separated into plasmon-enhanced excitation and coupled emission processes under unsaturated excitation conditions. Finite-difference time-domain (FDTD) method will be employed to explain the origin of the excitation and emission polarization dependence. A term "plasmophore", which is corned by Lakowicz et al., is quoted to describe the artificially prepared quantum emitters that are composed of plasmonic structure and fluorophore.;I believe that my research work will provide an in-depth understanding of the basic chemical and physical properties of plasmonic gold nanorods. These works can inspire future applications of plasmonic nanostructures on biotechnology, optoelectronics and solar energy conversion. -.
机译:贵金属纳米晶体由于其非凡的局部表面等离子体激元共振而引起了广泛的研究领域的关注,其本质上是局限在金属纳米结构中的集体电荷密度振荡。它们的应用范围从生命科学的生物成像,传感和治疗到微光电子学中的等离激子电路和光学数据存储。更有吸引力的是,它们可用于增强太阳能转换系统中的光收集。在本文中,我将从实验和理论上系统地描述金纳米棒的制备和组装以及它们与荧光团和光致变色分子的相互作用。我将首先介绍我对高折射率面金纳米晶体的研究。使用种子介导的生长方法,已经以高收率制备了伸长的四面体(THH)金纳米晶体。结构表征表明它们是被24个高折射率{037}晶面包围的单晶。电化学测量已证明,这些THH Au纳米晶体比由低折射率{1111}面包围的八面体Au纳米晶体具有更高的化学活性。接下来,我将演示通过液滴蒸发形成具有不同尺寸和形状的Au纳米结构的大面积,3D有序组装,包括纳米棒,多面体,纳米立方体和双锥体。所得组件的性质在很大程度上取决于单组分系统的Au纳米结构的形状。而二元纳米棒混合物的组装取决于我们实验中使用的两个纳米棒样品的相对直径。等离子体纳米结构的大多数应用是基于它们与其他化学/物理物种的相互作用。在我的研究工作中,对与光致变色分子和荧光团相互作用的金纳米棒进行了广泛的研究。对于光致变色分子,我已经证明了基于单个Au纳米棒和光致变色分子之间的共振耦合的等离子体开关。单个等离子体开关由单个纳米棒和周围的光致变色分子组成。其调制深度达到7.2 dB。操作这种单纳诺等离子体开关所需的估计功率和能量约为13 pW和39 pJ。对于荧光团,我将对我对等离子体激元-荧光团相互作用的研究进行系统的描述。将通过实验证明激发极化相关的等离激元增强的荧光,极化发射和通过局部等离振子共振对荧光团发射光谱的调制。在不饱和激发条件下,等离激元纳米棒与荧光团分子之间的相互作用可暂时分离为等离激元增强的激发和耦合发射过程。时域有限差分(FDTD)方法将用于解释激发和发射极化相关性的起源。引用拉科维奇(Lakowicz)等人的术语“质体”来描述由等离激元结构和荧光团组成的人工制备的量子发射体。;我相信我的研究工作将提供对基本结构的深入理解。等离子体金纳米棒的化学和物理性质。这些工作可以激发等离激元纳米结构在生物技术,光电和太阳能转换方面的未来应用。 -

著录项

  • 作者

    Ming, Tian.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Materials science.;Optics.;Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号