首页> 外文学位 >Stochastic Microlensing: Mathematical Theory and Applications.
【24h】

Stochastic Microlensing: Mathematical Theory and Applications.

机译:随机微透镜:数学理论和应用。

获取原文
获取原文并翻译 | 示例

摘要

Stochastic microlensing is a central tool in probing dark matter on galactic scales. From first principles, we initiate the development of a mathematical theory of stochastic microlensing. We first construct a natural probability space for stochastic microlensing and characterize the general behaviour of the random time delay functions' random critical sets. Next we study stochastic microlensing in two distinct random microlensing scenarios: The uniform stars' distribution with constant mass spectrum and the spatial stars' distribution with general mass spectrum. For each scenario, we determine exact and asymptotic (in the large number of point masses limit) stochastic properties of the random time delay functions and associated random lensing maps and random shear tensors, including their moments and asymptotic density functions. We use these results to study certain random observables, such as random fixed lensed images, random bending angles, and random magnifications. These results are relevant to the theory of random fields and provide a platform for further generalizations as well as analytical limits for checking astrophysical studies of stochastic microlensing.;Continuing our development of a mathematical theory of stochastic microlensing, we study the stochastic version of the Image Counting Problem, first considered in the non-random setting by Einstein and generalized by Petters. In particular, we employ the Kac-Rice formula and Morse theory to deduce general formulas for the expected total number of images and the expected number of saddle images for a general random lensing scenario. We further generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of global expected number of positive parity images due to a general lensing map. Applying the result to the uniform stars' distribution random microlensing scenario, we calculate the asymptotic global expected number of minimum images in the limit of an infinite number of stars. This global expectation is bounded, while the global expected number of images and the global expected number of saddle images diverge as the order of the number of stars.;Finally, we outline a framework for the study of stochastic microlensing in the neighbourhood of lensed images. This framework is related to the study of the local geometry of a random surface. In our case, the surface is non-Gaussian, and therefore standard literature on the subject does not apply. We explore the case of a random gravitational field caused by a random star.
机译:随机微透镜是在银河尺度上探测暗物质的主要工具。从最初的原理开始,我们开始发展随机微透镜数学理论。我们首先构造随机微透镜的自然概率空间,并表征随机时延函数的随机临界集的一般行为。接下来,我们在两种不同的随机微透镜场景中研究随机微透镜:具有恒定质谱的均匀恒星分布和具有常规质谱的空间恒星分布。对于每种情况,我们确定随机时滞函数以及相关的随机透镜图和随机剪切张量(包括它们的矩和渐近密度函数)的精确和渐近(在大量点质量范围内)随机属性。我们使用这些结果来研究某些随机可观察物,例如随机固定镜头图像,随机弯曲角度和随机放大率。这些结果与随机场理论有关,并为进一步概括以及检查随机微透镜天体研究的分析极限提供了一个平台。继续我们发展随机微透镜数学理论的过程,我们研究了图像的随机版本计数问题,由爱因斯坦首先在非随机环境中考虑,然后由佩特斯推广。尤其是,我们采用Kac-Rice公式和Morse理论来推导用于一般随机镜头场景的期望图像总数和鞍形图像期望数目的通用公式。我们通过考虑在光源平面的可数紧凑覆盖物上定义的随机光源来进一步概括这些结果。这样做是为了引入由于一般的镜头图而导致的全球预期正校验图像数量的概念。将结果应用到均匀恒星分布随机微透镜场景中,我们计算了在无限个恒星的限制下最小图像的渐近全局期望数。这种全局期望是有界的,而全局期望的图像数量和鞍形图像的全局期望数量随着恒星数量的顺序而发散。最后,我们概述了研究透镜图像附近随机微透镜的框架。 。该框架与随机表面局部几何形状的研究有关。在我们的情况下,表面是非高斯表面的,因此该主题的标准文献不适用。我们探索由随机恒星引起的随机引力场的情况。

著录项

  • 作者

    Teguia, Alberto Mokak.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Applied mathematics.;Astronomy.;Theoretical mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号