首页> 外文学位 >Spin Hall Effect of Light in Semiconductors.
【24h】

Spin Hall Effect of Light in Semiconductors.

机译:半导体中光的自旋霍尔效应。

获取原文
获取原文并翻译 | 示例

摘要

The lateral spatial separation between the circular polarization components of a linearly polarized light beam impinging at off-normal incidence on an air-semiconductor interface is investigated experimentally and theoretically. This fundamental optical phenomenon is referred to as the Spin Hall effect of light (SHEL).;Finally, analytical expressions of the shifts experienced by the circular components of a beam impinging at an interface between two optical media are also derived for an incident beam with an arbitrary spatial distribution. iii;An optical pump-probe technique is demonstrated to resolve in situ the nanometer size SHEL displacement of a beam transmitted inside an absorptive material. Three different types of optical interactions in silicon and GaAs demonstrate the technique's general applicability. First, resonant ∼150 fs pump and probe pulses at lambda = 820 nm resolve the SHEL displacement via free-carrier absorption in a 10 mum thick silicon sample. The measured SHEL displacements for a p-polarized probe beam are obtained between --10 to 150 nm as a function of the angle of incidence on the sample. Different angles of incidence are achieved by keeping a fixed angular separation between the pump and the probe beams while rotating the sample about the axis perpendicular to the plane of incidence. In another experiment, an optically thin (500 nm thick) GaAs sample allows one to use Pauli-blocking as an optical interaction to investigate the polarization and angular dependence of the SHEL in the probe beam. For such a polarization-dependent imaging technique, the SHEL displacement in the pump beam also contributes to the measured signal and is evaluated experimentally. A probe beam at normal incidence is used to measure a SHEL displacement of ∼180 nm in a transmitted p-polarized pump beam impinging on the sample with an angle of incidence of 55 degrees. Finally, two-photon absorption is used to resolve the SHEL in a (001) oriented 500 mum thick GaAs wafer using an optical source generating sub-bandgap radiation (lambda = 1550 nm) with a pulse duration of 120 fs. Linearly p- and s- co-polarized pump and probe beams are also used to investigate the polarization dependence of the SHEL. All the experimental results obtained using these different optical interactions agree with the theory within the experimental error.
机译:通过实验和理论研究了线偏振光束的圆偏振分量之间的横向空间分离,该线偏振光束以偏离法线入射的方式入射在空气-半导体界面上。这种基本的光学现象称为光的自旋霍尔效应(SHEL)。最后,对于入射光束,还推导了入射在两个光学介质之间的光束的圆形分量所经历的位移的解析表达式。任意的空间分布。 iii。展示了一种光学泵浦探针技术,用于原位解析在吸收性材料内部传输的光束的纳米尺寸SHEL位移。硅和砷化镓中的三种不同类型的光学相互作用证明了该技术的普遍适用性。首先,在λ= 820 nm处约150 fs的共振泵浦和探测脉冲通过在10微米厚的硅样品中的自由载流子吸收来解决SHEL位移。在-10至150 nm之间获得p极化探测光束的实测SHEL位移,该位移是样品入射角的函数。通过在泵和探针束之间保持固定的角度间隔,同时使样品绕垂直于入射平面的轴旋转,可以实现不同的入射角。在另一项实验中,光学厚度薄(500纳米厚)的砷化镓样品允许人们使用保利阻挡作为光学相互作用来研究探测光束中SHEL的偏振和角度依赖性。对于这种偏振相关的成像技术,泵浦光束中的SHEL位移也有助于测量信号并通过实验进行评估。垂直入射的探测光束用于测量以55度入射角撞击样品的透射p偏振泵浦光束的SHEL位移〜180 nm。最后,使用产生一个带隙为120 fs的亚带隙辐射(λ= 1550 nm)的光源,使用两光子吸收来解析取向为(001)的500微米厚GaAs晶片中的SHEL。线性p和s同极化泵浦光束和探测光束也用于研究SHEL的偏振依赖性。使用这些不同的光学相互作用获得的所有实验结果均在实验误差范围内与理论相符。

著录项

  • 作者

    Menard, Jean-Michel.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号